

UNIVERSITÀ

DI TORINO

Unveiling the Proton Structure: collinear and TMD observables

Yiyu Zhou University of Turin

LFQCD Seminar, Mar 5,

Jefferson Lab Angular collaboration (JAM)

Theory

- Alberto Accardi (Christopher Newport University/Jefferson Lab)
- Daniel Adamiak (Jefferson Lab)
- Trey Anderson (William & Mary)
- Patrick Barry (Argonne National Lab)
- Ian Cloet (Argonne National Lab)
- Christopher Cocuzza (William & Mary)
- Adam Freese (Jefferson Lab)
- Leonard Gamberg (Penn State University Berks)
- Chueng-Ryong Ji (North Carolina State University)
- Yuri Kovchegov (Ohio State University)
- Wally Melnitchouk* (Jefferson Lab)
- Andreas Metz (Temple University)
- Eric Moffat (Argonne National Lab)
- Daniel Pitonyak (Lebanon Valley College)
- Alexei Prokudin (Penn State University Berks)
- Jianwei Qiu (Jefferson Lab)
- Nobuo Sato* (Jefferson Lab)
- Matthew Sievert (New Mexico State University)
- Anthony Thomas (University of Adelaide)
- Richard Whitehill (Old Dominion University)
- Yiyu Zhou (Turin)

Lattice QCD

- Martha Constantinou (Temple University)
- Joseph Karpie (Jefferson Lab)
- Kostas Orginos (William & Mary/Jefferson Lab)
- David Richards (Jefferson Lab)
- Savvas Zafeiropoulos (Aix Marseille University)

Experiment

- Harut Avakian (Jefferson Lab)
- Peter Bosted (Jefferson Lab)
- Jianping Chen (Jefferson Lab)
- Markus Diefenthaler (Jefferson Lab)
- Thia Keppel (Jefferson Lab)
- Sebastian Kuhn (Old Dominion University)
- Shujie Li (LBNL)
- Hanjie Liu (University of Massachusetts Amherst)
- Zein-Eddine Meziani (Argonne National Lab)
- Oscar Rondon (University of Virginia)
- Brad Sawatzky (Jefferson Lab)

Past collaborators

- Rabah Abdul Khalek
- Carlota Andres
- Jake Bringewatt
- Nina Cao
- Filippo Delcarro
- Jacob Ethier
- Nicholas Hunt-Smith
- Pedro Jimenez-Delgado

Website: https://www.jlab.org/theory/jam

Proton spin decomposition

What is the decomposition of the proton spin?

- current extraction of $\Delta \Sigma$ is around 0.3 (contribution from quarks)
- spin can be extracted from parton distribution functions (PDFs)
- orbital angular momentum can be extracted from GPDs

How well do we know the gluon polarization in the proton?

Y. Zhou, N. Sato, and W. Melnitchouk (Jefferson Lab Angular Momentum (JAM) Collaboration) Phys. Rev. D **105**, 074022 – Published 25 April 2022

 $|\Delta g| \leq g$ PDF positivity constraint

- Sign of Δg is not uniquely determined by existing experimental data (DIS $W^2 > 10 \text{ GeV}^2$)
- PDF positivity constraints + data strongly disfavors the negative Δg
- Negative Δg violates significantly PDF positivity constraint
- PDF positivity is not a strict requirement in QCD

$$egin{aligned} A^{ ext{jet}}_{LL}(p_T,y) &\propto & a_{gg}[\Delta g\otimes\Delta g]+\sum_q a_{qg}[\Delta q\otimes\Delta g] \ &+ & \sum_{q,q'}a_{qq'}[\Delta q\otimes\Delta q'] \ + \ \mathcal{O}(lpha_s), \end{aligned}$$

 Δg enters quadratically, and different channels contribute with different signs and magnitudes

Charged-pion cross sections and double-helicity asymmetries in polarized p + p collisions at $\sqrt{s} = 200$ GeV

A. Adare *et al.* (PHENIX Collaboration) Phys. Rev. D **91**, 032001 – Published 2 February 2015 Measurement of charged pion double spin asymmetries at midrapidity in longitudinally polarized p + p collisions at \sqrt{s} = 510 GeV

U. Acharya *et al.* (PHENIX Collaboration) Phys. Rev. D **102**, 032001 – Published 5 August 2020

- PHENIX collaboration stated that the ordering of π^+ , π^0 and π^- asymmetries can help discriminate Δg solutions
- The two solutions for Δg found by JAM describe the data equally well

PHENIX: 1409.1907, 2004.02681

Measurement of Direct-Photon Cross Section and Double-Helicity Asymmetry at $\sqrt{s} = 510$ GeV in $\vec{p} + \vec{p}$ Collisions

N. J. Abdulameer *et al.* (PHENIX Collaboration) Phys. Rev. Lett. **130**, 251901 – Published 21 June 2023

- PHENIX collaboration stated that negative Δg is disfavored by more than 2.8 σ
- However, only last 3 high- $p_T A_{LL}$ points are well described in pQCD (see denominator of A_{LL})

8

Accessing gluon polarization with high- P_T hadrons in SIDIS

R. M. Whitehill, Yiyu Zhou, N. Sato, and W. Melnitchouk (Jefferson Lab Angular Momentum (JAM) Collaboration) Phys. Rev. D **107**, 034033 – Published 27 February 2023

SIDIS with large $p_{h,T}: e(\ell) + N(P) \rightarrow e(\ell') + h(P_h) + X$

(d)

- q_T is required to be comparable to photon virtuality Q
- Δg starts to contribute at LO
- The cross section depends on Δg linearly

10

SIDIS with large $p_{h,T}: e(\ell) + N(P) \rightarrow e(\ell') + h(P_h) + X$

$$A_{LL}^{\text{jet}}(p_T, y) \propto a_{gg}[\Delta g \otimes \Delta g] + \sum_q a_{qg}[\Delta q \otimes \Delta g] \\ + \sum_{q,q'} a_{qq'}[\Delta q \otimes \Delta q'] + \mathcal{O}(\alpha_s),$$
$$Q = A_{LL}^{\text{SIDIS}} \sim \Delta g + \Delta q + \cdots$$

Gluon helicity from global analysis of experimental data and lattice QCD loffe time distributions

J. Karpie, R. M. Whitehill, W. Melnitchouk, C. Monahan, K. Orginos, J.-W. Qiu, D. G. Richards, N. Sato, and S. Zafeiropoulos (Jefferson Lab Angular Momentum and HadStruc Collaborations) Phys. Rev. D **109**, 036031 – Published 27 February 2024

Toward the determination of the gluon helicity distribution in the nucleon from lattice quantum chromodynamics

Colin Egerer, Bálint Joó, Joseph Karpie, Nikhil Karthik, Tanjib Khan, Christopher J. Monahan, Wayne Morris, Kostas Orginos, Anatoly Radyushkin, David G. Richards, Eloy Romero, Raza Sabbir Sufian, and Savvas Zafeiropoulos (HadStruc Collaboration)

Phys. Rev. D **106**, 094511 – Published 28 November 2022

$$\widetilde{M}^{\mu\nu;\alpha\beta}(p,z) = \langle p | F^{\mu\nu}(0) W(0;z) \widetilde{F}^{\alpha\beta}(z) | p \rangle$$

$$\widetilde{\mathfrak{M}}(\nu, z^2) = \frac{\widetilde{M}_{00}(p, z) / p_0 p_3 Z_L(z_3/a)}{M_{00}(p = 0, z) / m^2}$$

$$\begin{split} \widetilde{\mathfrak{M}}(\nu, z^2) \langle x_g \rangle_{\mu^2} &= \widetilde{\mathcal{I}}_p(\nu, \mu^2) - \frac{\alpha_s N_c}{2\pi} \int_0^1 \mathrm{d} u \widetilde{\mathcal{I}}_p(u\nu, \mu^2) \Big\{ \ln \left(z^2 \mu^2 \frac{e^{2\gamma_E}}{4} \right) \\ &\quad \left(\left[\frac{2u^2}{\bar{u}} + 4u\bar{u} \right]_+ - \left(\frac{1}{2} + \frac{4}{3} \frac{\langle x_S \rangle_{\mu^2}}{\langle x_g \rangle_{\mu^2}} \right) \delta(\bar{u}) \right) \\ &\quad + 4 \left[\frac{u + \ln(1-u)}{\bar{u}} \right]_+ - \left(\frac{1}{\bar{u}} - \bar{u} \right)_+ - \frac{1}{2} \delta(\bar{u}) + 2\bar{u}u \Big\} \\ &\quad - \frac{\alpha_s C_F}{2\pi} \int_0^1 \mathrm{d} u \widetilde{\mathcal{I}}_s(u\nu, \mu^2) \Big\{ \ln \left(z^2 \mu^2 \frac{e^{2\gamma_E}}{4} \right) \widetilde{\mathcal{B}}_{gq}(u) + 2\bar{u}u \Big\} + \mathcal{O}(\Lambda_{\text{QCD}}^2 z^2) \,, \end{split}$$

Egerer et al: <u>2207.08733</u>

- Good description of global data after inclusion of LQCD for both solutions for Δg
- On the basis of χ^2 , LQCD cannot discriminate fully the sign of Δg

$$\chi^{2} = (\boldsymbol{d} - \boldsymbol{t})^{T} \boldsymbol{\Sigma}^{-1} (\boldsymbol{d} - \boldsymbol{t})$$
$$= (\boldsymbol{d} - \boldsymbol{t})^{T} \boldsymbol{U} \boldsymbol{D}^{-1} \boldsymbol{U}^{T} (\boldsymbol{d} - \boldsymbol{t})$$
$$= \sum_{i} \operatorname{res}_{i}^{*2}.$$

- Projections of residuals reveal strong correlations between LQCD data points
- The correlations prevent determination of sign of Δg

- LQCD distorts significantly the negative Δ*g* at *x* > 0.3
- Note that both solutions violate PDF positivity bounds in *x* > 0.3
- Before inclusion of LQCD data, $\Delta\Sigma$ were stable for both solutions
- Inclusion of LQCD data forces the ΔΣ to become negative at *x* > 0.4 for the negative gluon solution

Higgs production at RHIC and the positivity of the gluon helicity distribution

Daniel de Florian, Stefano Forte, and Werner Vogelsang Phys. Rev. D **109**, 074007 – Published 10 April 2024

- Higgs A_{LL} is directly sensitive to Δg squared at LO
- Calculations of A_{LL} (Higgs) with negative Δg can lead to unphysical results (using non-LQCD based analysis)

$$A_{LL}^{\mathrm{H}}(\tau) = \frac{[\Delta g \otimes \Delta g]}{[g \otimes g]} + \mathcal{O}(\alpha_s),$$

Can Higgs A_{LL} fully discriminate negative Δg ?

Negative Δg with LQCD constraints still admits a physical Higgs A_{LL}

New Data-Driven Constraints on the Sign of Gluon Polarization in the Proton

N. T. Hunt-Smith, C. Cocuzza, W. Melnitchouk, N. Sato, A. W. Thomas, and M. J. White (JAM Collaboration-Spin PDF Analysis Group) Phys. Rev. Lett. **133**, 161901 – Published 16 October 2024

	$\chi^2_{ m red}(\Delta g>0)$		$\chi^2_{ m red}(\Delta g < 0)$			$oldsymbol{N}$	
Reaction	baseline	+ LQCD	+ high-x DIS	baseline	+ LQCD	+ high-x DIS	
Polarized							
Inclusive DIS	0.95	0.96	1.21	0.98	1.12	1.25	1735^{*}
SIDIS	0.85	0.84	1.08	0.84	0.96	1.11	231
Inclusive jets	0.84	0.89	0.90	0.88	1.10	1.44	83
Inclusive W^{\pm}/Z	0.60	0.60	0.99	0.83	0.84	1.32	18
Total	0.89	0.90	1.18	0.92	1.06	1.24	2067
Unpolarized							
Inclusive DIS	1.17	1.17	1.17	1.18	1.18	1.19	3908
SIDIS	0.99	0.99	1.04	0.99	0.99	1.02	1490
Inclusive jets	1.28	1.28	1.30	1.29	1.29	1.30	198
Drell-Yan	1.21	1.21	1.21	1.24	1.24	1.24	205
Inclusive W^{\pm}/Z	1.01	1.01	1.01	1.03	1.03	1.04	153
Total	1.14	1.14	1.14	1.15	1.15	1.15	$\boldsymbol{5954}$
SIA	0.86	0.86	0.89	0.90	0.90	0.92	564
LQCD		0.57	0.58		1.18	3.92	48
Total	1.08	1.10	1.13	1.10	1.12	1.17	8633

1370 additional data points for pol DIS (+ high-*x* DIS)

- With inclusion of high-*x* DIS DSAs, LQCD data strongly disfavor negative Δg solution
- Combined DSA from jet and high-x DIS with LQCD allows us to discriminate the sign of Δg for the first time!

Summary of collinear section

- For the first time, we were able to discriminate the sign of Δg using data-driven approach
- Constraints from LQCD along with DSAs from jets and DIS at large-*x* were crucial to achieve the resolution of Δg sign
- Inclusion of LQCD is becoming increasingly important in global analysis
- Experimental constraints at large *x* on Δ*g* are still scarce, and more data are needed to reach precision similar to unpolarized gluon density (RHIC: **dijet**, EIC: small *x*, JLab-12/22: high *x*)

Proton structure in 3D

3D structure in momentum space

TMD (transverse momentum dependent) distributions:

- longitudinal momentum fraction
- transverse momentum k_{τ}

TMD Handbook

A modern introduction to the physics of Transverse Momentum Dependent distributions

Renaud Boussarie Matthias Burkardt Martha Constantinou William Detmold Markus Ebert Michael Engelhardt Sean Fleming Leonard Gamberg Xiangdong Ji Zhong-Bo Kang Christopher Lee Keh-Fei Liu Simonetta Liuti Thomas Mehen * Andreas Metz John Negele Daniel Pitonvak Alexei Prokudin Jian-Wei Qiu Abha Rajan Marc Schlegel Phiala Shanahan Peter Schweitzer lain W. Stewart * Andrey Tarasov Raju Venugopalan Ivan Vitev Feng Yuan Yong Zhao

* - Editors

Processes to extract TMDs

• Standard processes: SIDIS, Drell-Yan, e^+e^-

• Focus: using jets for 3D

imaging

Why jets?

- Precision probe of QCD
- Explore beyond standard model (BSM) parameters
- Probe quark gluon plasma (QGP)

Advantage of jet substructure:

- Clean laboratory for TMD physics: only one TMD function is involved
- Tomography: "scan" the longitudinal momentum fraction z_h distribution

Two types of jet production

Single inclusive: only care about a single jet

Exclusive: a fixed number of final state jets

(back-to-back dijet/Z+jet)

Single inclusive jet production

- Collinear PDFs: only one scale *p*_{*T*} is measured.
- TMD FFs: when hadron transverse momentum distribution is measured.

$$\frac{\mathrm{d}\sigma^{pp\to\mathrm{jet}(h)+X}}{\mathrm{d}p_T\,\mathrm{d}\eta\,\mathrm{d}z_h} \propto f_a \otimes f_b \otimes H_{ab\to c} \otimes \mathcal{D}_1^{h/c}(z, z_h, p_T R, \mu),$$
$$\frac{\mathrm{d}\sigma^{pp\to\mathrm{jet}(h)+X}}{\mathrm{d}p_T\,\mathrm{d}\eta\,\mathrm{d}z_h\,\mathrm{d}^2 \boldsymbol{j}_\perp} \propto f_a \otimes f_b \otimes H_{ab\to c} \otimes \mathcal{G}_1^{h/c}(z, z_h, \boldsymbol{j}_\perp, p_T R, \mu, \zeta_J),$$

Kang, Ringer & Vitev: 16; Dai, Kim & Leibovich: 16; Kaufmann, Mukherjee & Vogelsang: 15

- z_h : large momentum fraction of hadron v.s. jet
- *j*_⊥: hadron transverse momentum w.r.t jet axis

Relation between fragmenting **jet** functions (FJFs) and **standard** fragmentation functions

If you measure only collinear z_h distribution

$$\Delta_{(T)}\mathcal{G}_i^h(z, z_h, p_T R, \mu) = \sum_j \int_{z_h}^1 \frac{\mathrm{d}z_h'}{z_h'} \Delta_{(T)} \mathcal{J}_{ij}(z, z_h', p_T R, \mu) \Delta_{(T)} D_{h/j}\left(\frac{z_h}{z_h'}, \mu\right)$$

Kang, Xing, Zhao and Zhou, 2311.00672

Relation between FJFs and **standard** fragmentation function

 $\Delta \mathcal{J}_{qq}(z, z_h, p_T R, \mu) = \delta(1-z)\delta(1-z_h) + \frac{\alpha_s}{2\pi} \left\{ L \left| \Delta P_{qq}(z)\delta(1-z_h) - \Delta P_{qq}(z_h)\delta(1-z) \right| \right\}$ + $\delta(1-z) \left[2C_F(1+z_h^2) \left(\frac{\ln(1-z_h)}{1-z_h} \right) + C_F(1-z_h) + \Delta \mathcal{I}_{qq}^{\text{anti-}k_T}(z_h) \right]$ $-\delta(1-z_h)\left[2C_F(1+z^2)\left(\frac{\ln(1-z)}{1-z}\right)+C_F(1-z)\right]\right\},$ (2.43) $\Delta \mathcal{J}_{qg}(z, z_h, p_T R, \mu) = \frac{\alpha_s}{2\pi} \left\{ L \left[\Delta P_{gq}(z) \delta(1 - z_h) - \Delta P_{gq}(z_h) \delta(1 - z) \right] \right\}$ $+ \delta(1-z) \left[2\Delta P_{gq}(z_h) \ln(1-z_h) - 2C_F(1-z_h) + \Delta \mathcal{I}_{gq}^{\text{anti-}k_T}(z_h) \right]$ $-\delta(1-z_h)\left[2\Delta P_{gq}(z)\ln(1-z)-2C_F(1-z)
ight]
ight\},$ (2.44) $\Delta \mathcal{J}_{gq}(z, z_h, p_T R, \mu) = \frac{\alpha_s}{2\pi} \left\{ L \left[\Delta P_{qg}(z) \delta(1 - z_h) - \Delta P_{qg}(z_h) \delta(1 - z) \right] \right\}$ $+ \delta(1-z) \left[2\Delta P_{qg}(z_h) \ln(1-z_h) + 2T_F(1-z_h) + \Delta \mathcal{I}_{qg}^{\text{anti-}k_T}(z_h) \right]$ $-\delta(1-z_h)\left[2\Delta P_{qg}(z)\ln(1-z)+2T_F(1-z)\right],$ (2.45) $\Delta \mathcal{J}_{gg}(z, z_h, p_T R, \mu) = \delta(1-z)\delta(1-z_h) + \frac{\alpha_s}{2\pi} \left\{ L \left[\Delta P_{gg}(z)\delta(1-z_h) - \Delta P_{gg}(z_h)\delta(1-z) \right] \right\}$ $+\delta(1-z)\left[4C_A(2(1-z_h)^2+z_h)\left(\frac{\ln(1-z_h)}{1-z_h}\right)\right]$ $-4C_A(1-z_h)+\Delta \mathcal{I}_{gg}^{\mathrm{anti-}k_T}(z_h)$ $-\delta(1-z_h)\left[4C_A(2(1-z)^2+z)\left(\frac{\ln(1-z)}{1-z}\right)\right] - 4C_A(1-z)\right],$ (2.46) $\Delta_T \mathcal{J}_{qq}(z, z_h, p_T R, \mu) = \delta(1 - z)\delta(1 - z_h) + \frac{\alpha_s}{2\pi} \left\{ L \left[\Delta_T P_{qq}(z)\delta(1 - z_h) - \Delta_T P_{qq}(z_h)\delta(1 - z) \right] \right\}$ $+\delta(1-z)\left[4C_F z_h\left(\frac{\ln(1-z_h)}{1-z_h}\right) + \Delta_T \mathcal{I}_{qq}^{\operatorname{anti-}k_T}(z_h)\right]$ $-\delta(1-z_h)\left|4C_F z\left(\frac{\ln(1-z)}{1-z}\right)\right|\right\},$ (2.47)

$$\begin{split} \Delta \mathscr{J}_{qq}(z_h, p_T R, \mu) &= \delta(1 - z_h) + \frac{\alpha_s C_F}{2\pi} \bigg[\delta(1 - z_h) \bigg(\frac{L^2}{2} - \frac{\pi^2}{12} \bigg) - \Delta P_{qq}(z_h) L \\ &+ 1 - z_h + \Delta \mathscr{J}_{qq}^{\text{anti-}k_T}(z_h) \bigg], \\ \Delta \mathscr{J}_{qg}(z_h, p_T R, \mu) &= \frac{\alpha_s C_F}{2\pi} \bigg[-\Delta P_{gq}(z_h) L - 2(1 - z_h) + \Delta \mathscr{J}_{qg}^{\text{anti-}k_T}(z_h) \bigg], \\ \Delta \mathscr{J}_{gq}(z_h, p_T R, \mu) &= \frac{\alpha_s T_F}{2\pi} \bigg[-\Delta P_{qg}(z_h) L + 2(1 - z_h) + \Delta \mathscr{J}_{qq}^{\text{anti-}k_T}(z_h) \bigg], \\ \Delta \mathscr{J}_{gg}(z_h, p_T R, \mu) &= \delta(1 - z_h) + \frac{\alpha_s C_A}{2\pi} \bigg[\delta(1 - z_h) \bigg(\frac{L^2}{2} - \frac{\pi^2}{12} \bigg) - \Delta P_{gg}(z_h) L \\ &- 4(1 - z_h) + \Delta \mathscr{J}_{gq}^{\text{anti-}k_T}(z_h) \bigg], \\ \Delta_T \mathscr{J}_{qq}(z_h, p_T R, \mu) &= \delta(1 - z_h) + \frac{\alpha_s C_F}{2\pi} \bigg[\delta(1 - z_h) \bigg(\frac{L^2}{2} - \frac{\pi^2}{12} \bigg) \\ &- \Delta_T P_{qq}(z_h) L + \Delta_T \mathscr{J}_{q}^{\text{anti-}k_T}(z_h) \bigg], \\ 31 \end{split}$$

Relation between TMD FFs and TMD FJFs

🔶) Quark Spin

If you measure both z_h and \boldsymbol{j}_{\perp}

→ Hadron Spin

Leading Quark TMDFFs (

Quark polarization U Т \mathbf{L} Hadron polarization U $\mathcal{D}_1 = \mathcal{H}_1^{\perp} = 4$ $\mathcal{H}_{1L}^{\perp} = \mathcal{G}_{1L} = \longrightarrow (\bullet) - \longrightarrow (\bullet) |$ L $\mathcal{H}_1 = - \mathcal{H}_1$ $\mathcal{G}_{1T} = -$ Т \mathcal{D}_{1T}^{\perp}

TMD handbook, 2304.03302

Kang, Xing, Zhao and Zhou, 2311.00672

How do we connect them?

Kang, Xing, Zhao and **Zhou**, 2311.00672

ALL coefficients have been computed in our work!

Λ -baryon polarization

- Large transverse polarization found for Λ produced in unpolarized hadron scattering
- STAR recent measurement: test of universality of Λ polarized FFs

R. 202

Λ -baryon polarization

35

Single inclusive jet production: $pp \rightarrow jet(h)$

- collinear transversity PDFs
- TMD transversely polarized FFs

$$A_{TU,T}(z_h, j_\perp) \equiv \frac{h_1 \otimes f \otimes \mathcal{H}_1 \otimes \Delta_T \hat{\sigma}}{f \otimes f \otimes \mathcal{D}_1 \otimes \hat{\sigma}}$$

Exclusive jet production

- Momentum imbalance \boldsymbol{q}_T : sensitive to initial-state TMD distributions
- Hadron \boldsymbol{j}_{\perp} : sensitive to TMD FFs

$$\frac{\mathrm{d}\sigma_{pp}}{\mathrm{d}\mathcal{PS}} = \int \frac{\mathrm{d}^{2}\boldsymbol{b}}{\left(2\pi\right)^{2}} e^{-i\boldsymbol{q}_{T}\cdot\boldsymbol{b}} \tilde{f}_{a}^{q/p}(x_{a},b) \tilde{f}_{b}^{q/p}(x_{b},b) \\ \times \widetilde{S}_{n\overline{n}n_{J}}(\boldsymbol{b}) \widetilde{S}_{n_{J}}^{cs}(\boldsymbol{b},R) H_{ab\to cZ}(p_{T},m_{Z}) J_{c}(p_{JT}R)$$

- Kang, Lee, Shao & Zhao: <u>2106.15624</u>
- Kang, Lee, Xing, Zhao & Zhou: 2505.XXXX

Exclusive jet production: $pp \rightarrow Z + jet(h)$

- Recent measurement by LHCb (<u>2208.11691</u>)
- First time differential in both z_h and \mathbf{j}_{\perp} (proposed in <u>1906.07187</u>)

Exclusive jet production: $pp \rightarrow Z + jet(h)$

- JAM fitted FFs (<u>2101.04664</u>, <u>2202.03372</u>, **Zhou**: in preparation)
- Data included: e^+e^- , SIDIS, polarized SIDIS

TABLE I. Summary of χ^2 values per number of points N_{dat} for the various datasets used in this analysis.

Process	$N_{\rm dat}$	$\chi^2/N_{\rm dat}$
Polarized		
Inclusive DIS	365	0.95
SIDIS (π^+, π^-)	64	1.05
SIDIS (K^+, K^-)	57	0.42
SIDIS (h^+, h^-)	110	0.95
Inclusive jets	83	0.84
STAR W^{\pm}	12	0.65
PHENIX W^{\pm}/Z	6	0.50
Total	697	0.89
Unpolarized		
Inclusive DIS	3908	1.17
SIDIS (π^+, π^-)	498	0.94
SIDIS (K^+, K^-)	494	1.31
SIDIS (h^+, h^-)	498	0.71
Inclusive jets	198	1.28
Drell-Yan	205	1.21
W/Z production	153	1.01
Total	5954	1.12
SIA (π^{\pm})	231	0.91
SIA (K^{\pm})	213	0.70
SIA (h^{\pm})	120	1.07
Total	7215	1.08

Exclusive jet production: $pp \rightarrow Z + jet(\pi^{\pm})$

Exclusive jet production: $pp \rightarrow Z + jet(h^{\pm})$

Exclusive jet production: $pPb \rightarrow Z + jet(h)$

- Nuclear TMD modification extracted in <u>Alrashed, Anderle, Kang, Terry and Xing,</u> <u>2107.12401</u>
- Fitted for TMD PDFs & TMD FFs

$$S_{ ext{NP}}^{q/A,f}(b,Q_0,\sqrt{\zeta_a}) = rac{g_2}{2} \lnigg(rac{b}{b_\star}igg) \lnigg(rac{\sqrt{\zeta_a}}{Q_0}igg) + g_1^{q/A}b^2\,,$$
 $g_1^{q/A} = g_1 + a_N L, \quad L = A^{1/3} - 1$

Kang, Lee, Xing, Zhao & **Zhou**: 2403.XXXX

- Broadening of transverse momentum distribution
- Behaviour driven by collinear FFs

Exclusive jet production: $pPb \rightarrow Z + jet(h)$

- Nuclear TMD modification extracted in <u>Alrashed, Anderle, Kang, Terry and Xing,</u> <u>2107.12401</u>
- The reaction is $pPb \rightarrow Z + jet(\pi^{\pm})$
- LHC is interested in the observable and is planning to measure it

$$S_{\rm NP}^{q/A,f}(b,Q_0,\sqrt{\zeta_a}) = \frac{g_2}{2}\ln\left(\frac{b}{b_*}\right)\ln\left(\frac{\sqrt{\zeta_a}}{Q_0}\right) + g_1^{q/A}b^2,$$

Kang, Lee, Xing, Zhao & **Zhou**: 2505.XXXX

Exclusive jet production: $ep \rightarrow e + jet(h)$

- worm-gear function
- longitudinally polarized FFs

$$A_{TU,L}(z_h, j_\perp) \equiv \frac{\hat{\sigma}_0 H \mathscr{G}_{1L} \widetilde{g}_{1T} \overline{S}_{\text{global}} \overline{S}_{\text{cs}}}{\hat{\sigma}_0 H \mathscr{D}_1 \widetilde{f}_1 \overline{S}_{\text{global}} \overline{S}_{\text{cs}}}$$

Kang, Xing, Zhao and Zhou, 2311.00672

Summary of TMD section

- We established relations between **jet** fragmentation functions and **standard** fragmentation functions in all possible polarizations
- We use them to describe experimental data at RHIC and LHC
 - Kaon FFs can be further constrained from LHCb data
 - Λ polarization in jet from STAR can be described by our formalism
- Nuclear TMD corrections can also be studied with our formalism