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Introduction

Introduction

The proton and neutron are the fundamental constituents of atomic nuclei.
[E. Rutherford (1919). Phil. Mag. Ser. 6, 37:581–587] [J. Chadwick (1932). Nature, 129:312]

Figure: Atomic nuclei. Image Source: Google.

Proton and neutron are the lightest strongly interacting spin- 1
2
fermions, called the baryons.

Another class bosons, called mesons, includes pions as the lightest.
[C M G. Lattes, H. Muirhead, G P S. Occhialini, and C F. Powell (1947). Nature, 159:694–697] [E. Gardner and C M G. Lattes (1948). Science,

107:270–271]

baryons and mesons, are collectively known as hadrons.
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Introduction

Finite size of proton

Protons and neutrons are collectively known as nucleons based on the approximate isospin symmetry.
[W. Heisenberg (1932). Z. Phys., 77:1–11]

If nucleons were a spin− 1
2

point particle then it would have a magnetic moment of µN = eh̄
2MN

,
according to Dirac equation.

Proton and neutron magnetic moment was measured to be µp = 2.5 µN and µn = −1.5µN .
[R. Frisch and O. Stern (1933). Zeitschrift für Physik, 85(1):4–16] [L W. Alvarez and F. Bloch (1940). Phys. Rev., 57:111–122]
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Figure: Electron - proton elastic scattering.

The form factors (FFs) are defined through the matrix elements of the electromagnetic current
operator ⟨p′, s′|Jµ

p |p, s⟩ and functions of q2 = (ki − kf )
2.
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Introduction

The most general form of four-current constructed for a spin- 12 has two form factors

J
µ
p (x) =u

(s′)
(pf )[F1(q

2
)γ

µ
+

κ

2Mp

F2(q
2
) iσ

µν
qν ]u

(s)
(pi) e

i(p′−p)·x
,

where F1(q
2) and F2(q

2) are two independent form factors, κ is the anomalous magnetic moment,
Mp is mass of the proton and σµν = i

2 [γµ, γν ].
ki kf

pi pf

F1γ
µ
+ F2

iσµνqν
2Mp

For q2 → 0 the target is effectively a particle of charge e and magnetic moment (1 + κ)e/2Mp,
where κ is the amomalous magnetic moment. Thus in this limit form factors for the proton are

F1(0) = 1, F2(0) = 1.

Correcponding values for neutron are

F1(0) = 0, F2(0) = 1.
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Introduction

Charge and magnetic moment distribution

GE(q2) ≡ F1(q
2) + κq2

4M2
p
F2(q

2), GM (q2) ≡ F1(q
2) + κF2(q

2).

Breit frame pµf = (E,−p) and pµi = (E,p), there is no energy transfer to the proton.

In this frame, we have
ρ = 2MpeGE , J = eu(−p)γ u(p)GM .

The condition is
q
2

(
q2

4M2
p

− 1

)
= q

2
.

So in the limit q2 << 4M2
p the timelike component of q2 is relatively small and q2 ≈ −q2.
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Introduction

The nature of the plots can be parametrized by the dipole
formula

GM (Q
2
) = 2.79GE(Q

2
) ≈ 2.79

1(
1 + Q2

0.71 GeV 2

)2
.

This implies that the proton charge distribution has an
exponential form in configuration space

ρ(r) ≈ e−mr
,

withm2 = 0.71GeV 2.

The mean square charge radius of the proton is

⟨r2⟩ = 6

(
d GE(Q2)

dQ2

)
Q2=0

=
(
0.81× 10

−13 cm
)2
.

[R W. Mcallister and R. Hofstadter (1956). Phys. Rev., 102:851–856]

Figure: Proton elastic form factors
as a function ofQ2 = −q2, []. Image
source: [M. Thomson (2013). Cambridge University

Press, New York]

Sudeep Saha (IIT Bombay) IMP, Huizhou December 25, 2024 5 / 48

http://dx.doi.org/10.1103/PhysRev.102.851


Introduction

Electron-proton deep inelastic scattering (DIS)

If we want a more detailed structure, we have to decrease the
wavelength of the virtual photon for better resolution, which can be
done by increasing the energy loss of the scattered electron.

(Image source: [M. Thomson (2013). Cambridge University Press, New York])

If we increase theQ2 of the virtual photon then elastic scattering cross-section becomes

dσ

dΩ

∣∣∣∣
(elastic)

/(
dσ

dΩ

)
0

≈
(
1 + 2τ tan2

θ

2

)
G

2
M , where

(
dσ

dΩ

)
0

=

(
α2

4E2 sin4 θ
2

)
E′

E
cos2

θ

2
.

At high Q2 limit GM ∝ Q−4, so

dσ

dΩ

∣∣∣∣
elastic
∝

1

Q6

(
dσ

dΩ

)
0

,

with increasing virtuality of the photon, due to the finite size of the proton, the probability of elastic
scattering decreases and inelastic scattering dominates.
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Introduction

Deep inelastic scattering

In electron-proton deep inelastic scattering (DIS), a high-energy
proton breaks apart into many particles, losing its identity.
[J I. Friedman and H W. Kendall (1972). Annual Review of Nuclear Science, 22(1):203–254].

X

P

kfki

q

Invariant mass of the final state takes a range of valuesW 2 = (P + q)2 = M2
p + 2P · q + q2 and

now (P · q) is also an independent variable. We define

Q
2
= −q2, ν =

P · q
Mp

.

The structure functions F1,2 that describe the response of nucleons in DIS are functions ofQ2 and ν.
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Introduction

Bjorken scaling

The Bjorken limit is when Q2, ν → ∞ with x = Q2

2Mpν
fixed, leading to structure functions

Fi(x,Q
2) → Fi(x). This indicates that the virtual photon scatters off point-like particles within the

proton.

This was predicted based on current algebra and dispersion relation techniques and was observed in
DIS.

Figure: Measuremt of F ep
2 (x,Q2) showing Bjorken scaling at SLAC, [J D. Bjorken (1969). Phys. Rev.,

179:1547–1553], [E D. Bloom et al. (1969). Phys. Rev. Lett., 23:930–934]. Image source: [M. Thomson (2013). Cambridge University Press, New

York]
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Introduction

Parton model

The nucleon structure is described by parton distribution functions (PDFs), fa1 (ξ), which represent
the probability of finding a parton of type ‘‘a” with momentum fraction in the interval [ξ, ξ + dξ].
[R P. Feynman (1969). Phys. Rev. Lett., 23:1415–1417]

X

pi

kfki

q

ξpi

ξpi + q

In this model, the electron scatters off nearly free electrically charged point-like spin- 1
2
particles

called partons.

These charged partons are also termed ‘quarks’ due to the theoretical work of Gell-Mann.
[M. Gell-Mann (1964). Phys. Lett., 8:214–215]
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Introduction

Scaling violation

Figure: Deviation of scaling of the structure-function F ep
2 (x,Q2). Image source [M. Thomson (2013). Cambridge

University Press, New York].
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Mechanical properties of hadron

Mechanical properties of hadron

The QCD Lagrangian

L =
∑
q

ψq

(
iγ

µ
Dµ +mq

)
ψq −

1

4
F

c
µνF

cµν
,

where ψq

(
ψq

)
: quark (anti-quark) field, iDµ = i∂µ + gAc

µT
c, T c: SU(Nc) generators, Ac:

gauge fields, F c
µν = ∂µA

c
ν − ∂νA

c
µ + gfcdeAd

µA
e
ν , fcde: structure constants of SU(Nc) group.

Image source: BNL photo albums
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Mechanical properties of hadron

What is the source of nucleon mass?

How to understand the nucleon spin in terms of its fundamental degrees of freedom?

Polarized deep inelastic scattering (DIS) experiments suggest that only one-third of nucleon spin
comes from the quark’s intrinsic spin.
[J. Ashman et al. (1988). Phys. Lett. B, 206:364]

RHIC-spin experiments have provided important constraints on the contribution of gluon’s helicity to
the proton spin.
[D. de Florian, R. Sassot, M. Stratmann, and W. Vogelsang (2014). Phys. Rev. Lett., 113(1):012001]
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Mechanical properties of hadron

1
2
= Quark spin + Gluon helicity + Orbital angular momentum (?)

Present experiments like Jlab 12 GeV and upcoming Electron-Ion Collider (EIC) at Brookhaven
National Lab aim to measure the OAM and spin of all partons with increased accuracy.
[J. Dudek et al. (2012). Eur. Phys. J. A, 48:187] [R. Abdul Khalek et al. (2022). Nucl. Phys. A, 1026:122447]
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Mechanical properties of hadron

The matrix elements of the energy-momentum tensor (EMT) of QCD are essential for addressing
these questions.

Parameterizing the EMT for a spin- 1
2
system can be achieved in terms of four gravitational form

factors (GFFs) [M V. Polyakov and P. Schweitzer (2018). Int. J. Mod. Phys. A, 33(26):1830025]

⟨p′, λ′|Tµν
i (0)|p, λ⟩

=u(p
′
, λ

′
)

[
− Bi(∆

2
)
PµP ν

M
+
(
Ai(∆

2
) + Bi(∆

2
)
) 1

2

(
γ
µ
P

ν
+ γ

ν
P

µ)
+ Ci(∆

2
)
∆µ∆ν −∆2gµν

M
+ Ci(∆

2
)Mg

µν

]
u(p, λ),

where i = q, G, Pµ = 1
2

(
p′ + p

)µ and ∆µ =
(
p′ − p

)µ.
Gordon decomposition:

u(p
′
, λ)

[
P

µ
iσ

νλ
qλ + P

ν
iσ

µλ
qλ

]
u(p, λ) = u(p

′
, λ)

[
2M

(
γ
µ
P

ν
+ γ

ν
P

µ)− 4P
µ
P

ν]
u(p, λ).

Conservation of total energy-momentum tensor (EMT) rules out terms like (Pµqν + qµP ν) and
(γµqν + γνqµ) also puts a constraint∑i Ci(q

2) = 0.
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Mechanical properties of hadron

Constraints on the gravitational form factors

The conservation of momentum puts a constraint:∑
q,G

Ai(0) = 1.

Ji’s sum rule

Jq,G =
1

2
(Aq,G(0) + Bq,G(0)) ,∑

q,G

Bi(0) =0.

where Jq,G : Total angular momentum of quarks and gluons.
Conservation of the total EMT puts a constraint:∑

q,G

Ci(∆
2
) = 0.

The GFF C(∆2) also known as the D-term (D(∆2) = 4C(∆2)), is unconstrained at zero momentum
transfer.

D-term or Druck-term, which provides us with information about the internal forces within the
system.
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Mechanical properties of hadron

Observables for gravitational form factors

Graviton-proton scattering, as the EMT couples to the graviton.
[H. Pagels (1966). Phys. Rev., 144:1250–1260]

Image source: [M V. Polyakov and P. Schweitzer (2018). Int. J. Mod. Phys. A, 33(26):1830025]

Hard exclusive scatterings e.g. deeply virtual Compton scattering (DVCS): ep→ e′p′γ

GPDs

x + ξ x− ξ

γ∗
γ

p p′

e

e′
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Mechanical properties of hadron

The generalized parton distribution (GPD) functions

Φ
[Γ]

(x, ξ, t) =
1

2

∫
dz−

2π
e
ixP+z− ⟨p′|ψ

(
−

1

2
z

)
Γψ

(
1

2
z

)
|p⟩

∣∣∣∣∣
z+=0.z⊥=0

,

Γ : Dirac matrix, ψ : Quark field.
GPDs depend on x, t, ξ

x =
k+ + k′+

p+ + p′+
, t = ∆

2
, ξ =

p+ − p′+

p+ + p′+
,

(Average longitudinal momentum fraction of a parton) (Four momentum squared) (Skewness parameter)

define

P =
p+ p′

2
, ∆ = p

′ − p.

For Γ = γ+

Φ
[γ+]

(x, ξ, t) =
1

2P+

[
H

q
(x, ξ, t)u(p

′
)γ

+
u(p) + E

q
(x, ξ, t)u(p

′
)
iσ+α

2m
u(p)

]
.

Sudeep Saha (IIT Bombay) IMP, Huizhou December 25, 2024 17 / 48



Mechanical properties of hadron

Gravitational form factors from GPDs

The use of GPDs to address the physical content of GFFs was done by Ji in the context of the angular
momentum decomposition of nucleons.∫ 1

−1

dx x
(
H

a
(x, ξ, t) + E

a
(x, ξ, t)

)
= A

a
(t) + B

a
(t),

where a = g, u, d, ... are type of partons. [X D. Ji (1997). Phys. Rev. Lett., 78:610–613]

The GPDs Hq(x, ξ, t) andEq(x, ξ, t) give access to the quark GFFs as follows∫ 1

−1

dx xH
q
(x, ξ, t) =A

q
(t) + ξ

2
D

q
(t),∫ 1

−1

dx xE
q
(x, ξ, t) =B

q
(t)− ξ2Dq

(t).

[M V. Polyakov and P. Schweitzer (2018). Int. J. Mod. Phys. A, 33(26):1830025]
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Mechanical properties of hadron

The D-term has been determined from experimental data on deeply virtual Compton scattering
(DVCS) at Jefferson Lab. [V D. Burkert, L. Elouadrhiri, and F X. Girod (2018). Nature, 557(7705):396–399]
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Mechanical properties of hadron

The pressure and shear force experienced by quarks.
[V D. Burkert, L. Elouadrhiri, and F X. Girod (2018). Nature, 557(7705):396–399]

[Burkert, V. D., Elouadrhiri, L., and Girod, F. X. (2021). arXiv:2104.02031v2 [nucl-ex]]
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Mechanical properties of hadron

Light-front coordinates:

x
±

=
(
x
0 ± x3

)
, x

µ
=
(
x
+
, x

−
,x

⊥
)

where x+ is the light-front time, x− and x⊥ are the
longitudinal and transverse spatial coordinates respectively.

Light-front four-momentum:

p
µ

=
(
p
+
, p

−
,p

⊥
)
,

where p+ is the longitudinal momentum, p− and p⊥ are the
energy and transverse momentum respectively.

Metric tensor as

g
µν

=

0 2 0 0
2 0 0 0
0 0 −1 0
0 0 0 −1

 , gµν =

0 1
2 0 0

1
2 0 0 0
0 0 −1 0
0 0 0 −1

 .

Also we define the dot product of xµ and pµ in the following way

x · p =
1

2
x
+
p
−

+
1

2
x
−
p
+ − x

⊥ · p⊥
.

Image source: [S J. Brodsky, H C. Pauli, and S S. Pinsky (1998). Phys. Rept., 301:299–486]
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Mechanical properties of hadron

Benefits of using light front coordinates

Simple dispersion relation: p− = p⊥2+m2

p+
.

In light-front coordinates then we can define the Poincaré generators in the following way

P
µ

=
1

2

∫
dx

−
d
2
x

⊥
T

+µ

M
µν

=
1

2

∫
dx

−
d
2
x

⊥
[
x
µ
T

+ν − xν
T

+µ
]
.

Dirac termed the interaction-dependent components as dynamic and interaction-independent
components as kinematic components. The kinematic generators keep the x+ = 0 surface invariant.
[P A M. Dirac (1949). Rev. Mod. Phys., 21:392–399]

The boost operators: M+− = 2K3, M+i = Ei, (i = 1, 2), the rotational operators are
M12 = 2J3, M−i = F i, (i = 1, 2), P− is the light-front energy and P =

(
P+, P⊥

)
.

Kinematic Dynamic
P+, P⊥,K3, Ei, J3 P−, F i

Sudeep Saha (IIT Bombay) IMP, Huizhou December 25, 2024 22 / 48

http://dx.doi.org/10.1103/RevModPhys.21.392


Mechanical properties of hadron

The longitudinal boost operatorK3 acts like a scale transformation and transverse boosts are Galilean
in nature.

Consider a boost along the negative 3-axis

x̃
0
= x

0 coshϕ+ x
3 sinhϕ, x̃3

= x
0 sinhϕ+ x

3 coshϕ,

under this transformation we can prove

x̃
+

= x̃
0
+ x̃

3
= e

ϕ
x
+
, x̃

−
= x̃

0 − x̃3
= e

−ϕ
x
+
.

Transverse boost generators

E
1
= −i

 0 −1 0 0
−1 0 0 −1
0 0 0 0
0 1 0 0

 , E2
= −i

 0 0 −1 0
0 0 0 0
−1 0 0 −1
0 0 1 0


For infinitesimal trasformation eiϕEj

= 1 + iϕEj , we can prove x̃+ = x̃0 + x̃3 = x+, where
(j = 1, 2).

Sudeep Saha (IIT Bombay) IMP, Huizhou December 25, 2024 23 / 48



Mechanical properties of hadron

Internal Forces of Hadron

For a local operator Ô(x) the corresponding spatial density is given by the expectation value
⟨Ψ|Ô(x)|Ψ⟩, where |Ψ⟩ represents a physically realizable hadron state.

⟨Ô(x
⊥
)⟩ =

1

2

∫
dx

−⟨Ψ|Ô(x
+

= 0, x
−
,x

⊥
)|Ψ⟩∫

d2∆⊥

(2π)2
⟨P+,p′⊥, λ|Ô(0)|P+,p⊥, λ⟩

2P+
e
−i∆⊥·x⊥

e
−σ2

2
∆⊥2

.

The wave packet has a specific longitudinal momentum P+ and helicity λ:

⟨P+
,p

⊥
, s|Ψ⟩ =

√
2π(2σ)e

−σ2p⊥2
√

2p+(2π)δ(p+ − P+) δsλ,

P =
p+ p′

2
, ∆ = p

′ − p.

The two-dimensional distributions in light front coordinates are devoid of relativistic corrections.
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Mechanical properties of hadron

The transverse component of the EMT constitutes the stress tensor.

⟨T ij
(x

⊥
)⟩

=
1

2P+

∫
d2∆⊥

(2π)2

[
Di(∆

2)

2

(
∆

i
∆

j
+ ∆

2
δ
ij
)
− Ci(∆

2
)2M

2
δ
ij

]
e
−i∆⊥·x⊥

e
−σ2

2
∆⊥2

.

The stress tensor can be parametrized in two independent functions of x⊥ as follows

⟨T ij
(x

⊥
)⟩ = δ

ij
p(x

⊥
) +

(
xixj

x⊥2
−

1

2
δ
ij

)
s(x

⊥
),

where p(x⊥) is the light font pressure, s(x⊥) is the shear stress and x⊥ = |x⊥|.
[A. Freese and G A. Miller (2021). Phys. Rev. D, 103:094023]

The pressure

p(x
⊥
) =

1

2
δij⟨T ij

(x
⊥
)⟩

=
1

8P+

∫
d2∆⊥

(2π)2

(
−∆⊥2

)
Di(∆

2
)e

−i∆⊥·x⊥
e
−σ2

2
∆⊥2

−
1

P+

∫
d2∆⊥

(2π)2
(M

2
)Ci(∆

2
)e

−i∆⊥·x⊥
e
−σ2

2
∆⊥2

.

The von Laue stability
condition∫

d
2
x

⊥
p(x

⊥
) = 0.

The pressure and shear stress connected by the EMT conservation∇i⟨T ij(x⊥)⟩ = 0

p
′
(x

⊥
) +

1

2
s
′
(x

⊥
) +

1

x⊥ s(x
⊥
) = 0,

where x⊥ = |x⊥| and p′(x⊥) =
dp(x⊥)

dx⊥ .[A. Freese and G A. Miller (2021). Phys. Rev. D, 103:094023]
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Mechanical properties of hadron

The pressure and shear stress can be written in a differential form in impact parameter space

p(b
⊥
) =

1

8m(b⊥)

d

db⊥

[
b
⊥ d

db⊥
Di(b

⊥
)

]
−mCi(b

⊥
),

s(b
⊥
) = −

b⊥

4m

d

db⊥

[
1

b⊥
d

db⊥
Di(b

⊥
)

]
,

where

F (b
⊥
) =

1

(2π)2

∫
d
2
∆

⊥
e
−i∆⊥·b⊥F(∆

2
) =

1

2π

∫ ∞

0

d∆
⊥2
J0
(
∆

⊥
b
⊥
)
F(∆

2
).

where F =
(
Ai, Bi, Di, Ci

)
, i ≡ (q,G). J0 is Bessel’s function of zeroth order, b⊥ is the impact

parameter andm is the mass of the system. [J. More, A. Mukherjee, S. Nair, and S. Saha (2022). Phys. Rev. D, 105(5):056017][J.

More, A. Mukherjee, S. Nair, and S. Saha (2023). Phys. Rev. D, 107(11):116005]

Gaussian wave packet state with a gaussian width σ

1

16π3

∫
d2p⊥dp+

p+
p
+
δ(p

+ − p+0 )e
− p⊥2

2σ2 |p+,p⊥
, λ⟩.
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Mechanical properties of hadron

Stability condition

The normal force density on a one-dimensional surface

⟨T ij
(x

⊥
)⟩xi

⊥ ≥0

p(x
⊥
) +

1

2
s(x

⊥
) ≥0.

Using pressure and shear force expressions∫
d2∆⊥

(2π)2

[
D(∆

2
) + ∆

2 dD(∆2)

d∆2

]
e
−i∆⊥·b⊥ ≤ 0.

Integrating the above expression over all space we get

D(0) ≤ 0.
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Mechanical properties of hadron

Normal and tangential force

The normal and tangential forces:

Fn(b
⊥
) =2πb

⊥
(
p(b

⊥
) +

1

2
s(b

⊥
)

)
,

Ft(b
⊥
) =2πb

⊥
(
p(b

⊥
)−

1

2
s(b

⊥
)

)
.

The normal force must be Fn(b
⊥) > 0 and the tangential force Ft(b

⊥) must change sign with the
distance. [J. More, A. Mukherjee, S. Nair, and S. Saha (2022). Phys. Rev. D, 105(5):056017][J. More, A. Mukherjee, S. Nair, and S. Saha (2023).

Phys. Rev. D, 107(11):116005]
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Mechanical Properties of a Dressed Quark State

Mechanical Properties of a Dressed Quark State

The dressed quark state

We consider replacing the hadron state with a simpler relativistic spin- 1
2
state of a quark dressed with

a gluon at one loop in QCD as a perturbative model with a gluon degree of freedom.
[A. Harindranath, R. Kundu, and W M. Zhang (1999). Phys. Rev. D, 59:094013]

The dressed quark state can be expanded in Fock space in terms of multiparton light-front wave
functions (LFWFs) which can be calculated using the light-front Hamiltonian in perturbation theory.
[A. Harindranath, A. Mukherjee, and R. Ratabole (2001). Phys. Rev. D, 63:045006]

We can write the LFWFs in a boost invariant way in terms of relative momenta that are
frame-independent.
[S J. Brodsky, H C. Pauli, and S S. Pinsky (1998). Phys. Rept., 301:299–486]
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Mechanical Properties of a Dressed Quark State

Up to two-particle sector, dressed quark state is given by

|p, λ⟩ =ψ1(p, λ)b
†
λ(p)|0⟩

+
∑

λ1,λ2

∫
dk+1 d

2k⊥
1√

2(2π)3k+1

∫
dk+2 d

2k⊥
2√

2(2π)3k+2

ψ2 (p, λ|k1, λ1; k2, λ2)

√
2(2π)3P+δ

3
(p− k1 − k2) b†λ1

(k1)a
†
λ2

(k2)|0⟩,

ψ1(p, λ) is normalization, ψ2 (p, λ|k1, λ1; k2, λ2) is the probability amplitude of finding a quark
and gluon with momentum (helicity) k1(λ1) & k2(λ2) respectively.
[A. Harindranath, R. Kundu, and W M. Zhang (1999). Phys. Rev. D, 59:094013]

ψ2 (p, λ|k1, λ1; k2, λ2) can be calculated from the following equation

H|p, λ⟩ =
m2 + p⊥2

p+
|p, λ⟩,

where H is the light-front QCD Hamiltonian.
[W M. Zhang and A. Harindranath (1993). Phys. Rev. D, 48:4881–4902]
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Mechanical Properties of a Dressed Quark State

Boost invariant two-particle LFWF can be written as

ϕ
λ
λ1,λ2

(xi,κi) =
√
p+ψ2 (p, λ|k1, λ1; k2, λ2)

ϕ
λ
λ1,λ2

(xi,κi)

=
g√

2(2π)3

[
x(1− x)

κ⊥2 +m2(1− x)2

]
Ta

√
1− x

×

χ
†
λ1

−2
(
κ⊥ · ϵ⊥∗

λ2

)
1− x

−
1

x

(
σ̃
⊥ · κ⊥

)(
σ̃
⊥ · ϵ⊥∗

λ2

)
+ im

(
σ̃
⊥ · ϵ⊥∗

λ2

) 1− x
x

χλψ
λ
1 .

Jacobi momentum

k
+
i = xip

+
, k

⊥
i = κ

⊥
i + xip

⊥
,

x1 + x2 = 1, κ
⊥
1 + κ

⊥
2 = 0,

wherem is quark mass, g is gluon coupling constant, Ta are SU(3) colour matrices, ϵ⊥λ2
is gluon

polarization vector and χλ is two-component spinor.
[A. Harindranath, R. Kundu, and W M. Zhang (1999). Phys. Rev. D, 59:094013]
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Mechanical Properties of a Dressed Quark State

Two-Component formalism

In light-front coordinates, the unphysical degrees of freedom of the gauge field are eliminated by
light-front gauge A+

a = A0
a + A3

a = 0.

In the light-front Hamiltonian framework, the quark fields are decomposed as

ψ = ψ+ + ψ−,

where ψ± = Λ±ψ and Λ± are the projection operators.

The ψ− component and longitudinal gauge field A−
a are constrained fields and can be determined

from the following equations

i∂
+
ψ− =

(
iα

⊥ · ∂⊥
+ gα

⊥ · A⊥
+ βm

)
ψ+,

1

2
∂
+
E

−
a =

(
∂
i
E

i
a + gf

abc
A

i
bE

i
c

)
− gψ†

+T
a
ψ+,

where α⊥ = γ0γ⊥, β = γ0 and E−,i
a = − 1

2∂
+A−,i

a , (i = 1, 2).
[W M. Zhang and A. Harindranath (1993). Phys. Rev. D, 48:4881–4902]
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Mechanical Properties of a Dressed Quark State

Independent dynamical degrees of freedom in light-front QCD are ψ+ and the transverse gauge fields
Ai

a.

In light-front coordinates, a four-component fermion field can be reduced to a two-component field in
a light-front representation of gamma matrices defined as

γ
+

=

(
0 0
2i 0

)
, γ

−
=

(
0 −2i
0 0

)
γ
i
=

(
−iσi 0

0 iσi

)
, γ

5
=

(
σ3 0
0 −σ3

)
.

In this representation, the projection operators become

Λ+ =

(
1 0
0 0

)
, Λ− =

(
0 0
0 1

)
.

The quark fields decompose as

ψ+ =

[
ξ
0

]
, ψ− =

[
0
η

]
.

[W M. Zhang and A. Harindranath (1993). Phys. Rev. D, 48:4881–4902]
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Mechanical Properties of a Dressed Quark State

The two-component quark fields are given by

ξ(y) =
∑
λ

χλ

∫
[dk]√
2(2π)3

[bλ(k)e
−ik·y

+ d
†
−λ(k)e

ik·y
],

η(y) =

(
1

i∂+

)[
σ
⊥ ·
(
i∂

⊥
+ gA

⊥
(y)
)
+ im

]
ξ(y).

The dynamical components of the gluon field are given by

A
⊥
(y) =

∑
λ

∫
[dk]√

2(2π)3k+
[ϵ

⊥
λ aλ(k)e

−ik·y
+ ϵ

⊥∗
λ a

†
λ(k)e

ik·y
],

where [dk] = dk+d2k⊥√
2(2π)3k+

, χλ is the eigenstate of σ3 and ϵiλ is the polarization vector of transverse
gauge field.
[A. Harindranath, R. Kundu, and W M. Zhang (1999). Phys. Rev. D, 59:094013]

Here, we have suppressed the colour indices.
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Mechanical Properties of a Dressed Quark State

The symmetric QCD EMT is defined as

T
µν

= T
µν
q + T

µν
G ,

T
µν
Q =

1

2
ψ i
[
γ
µ
D

ν
+ γ

ν
D

µ]
ψ − gµν

ψ
(
iγ

λ
Dλ −m

)
ψ︸ ︷︷ ︸

(zero by EOM)

,

T
µν
G = −Fµλ

a F
ν
λa +

1

4
g
µν

(Fλσa)
2
.

The covariant derivative is iDµ = i
←→
∂ µ + gAµ and α(i←→∂ µ)β = i

2α (∂µβ)− i
2 (∂µα) β.

The field strength tensor for non-Abelian gauge theory is

F
µν
a = ∂

µ
A

ν
a − ∂

ν
A

µ
a + gf

abc
A

µ
bA

ν
c ,

where ψ and Aµ are the fermion and boson fields, respectively.
In the Drell-Yan Frame:

a
µ

=
(
a
+
,a

⊥
, a

−
)
,

p
µ

=

(
p
+
, 0

⊥
,
m2

p+

)
, p

′µ
=

(
p
+
,∆

⊥
,
∆⊥2 +m2

p+

)
, ∆

µ
=

(
0,∆

⊥
,
∆⊥2

p+

)
.
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Mechanical Properties of a Dressed Quark State

Extraction of gravitational form factors

Define

Mµν

λλ′ =
1

2

[
⟨p′, λ′|Tµν

i (0)|p, λ⟩
]

where the Lorentz indices (µ, ν) ≡ {+,−, 1, 2}, (λ, λ′) ≡ {↑, ↓} is the helicity of the initial and
final state. ↑ (↓) positive (negative) spin projection along z− axis, (i = q,G).
The GFFs Ai(∆

2) and Bi(∆
2) can be extracted from the following equations

M++
↑↑ +M++

↓↓ = 2 (P
+
)
2
Ai(∆

2
),

M++
↑↓ +M++

↓↑ =
i∆(2)

M
(P

+
)
2
Bi(∆

2
).

The GFFs Cq(∆
2) and Cq(∆

2) can be extracted from the following equations

M11
↑↓ +M11

↓↑ −M
22
↑↓ −M

22
↓↑ =i

[
Bq(∆

2)

4M
−
Cq(∆

2)

M

](
(∆

(1)
)
2
∆

(2) − (∆
(2)

)
3
)
,

M11
↑↓ +M11

↓↑ +M22
↑↓ +M22

↓↑ =i

[
Bq(∆

2
)
∆2

4M
− Cq(∆

2
)
3∆2

M
+ Cq(∆

2
)2M

]
∆

(2)
.
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Mechanical Properties of a Dressed Quark State

The GFF CG(∆2), i.e., the D-term, can be extracted from

M11
↑↓ +M11

↓↑ +M22
↑↓ +M22

↓↑ = i

[
BG(∆

2
)
∆2

4M
− CG(∆

2
)
3∆2

M
+ CG(∆

2
)2M

]
∆

(2)
.

For GFF CG(∆2), we have:

∆µMµ(1)
↑↓ + ∆µMµ(1)

↓↑ = −i∆(1)
∆

(2)
mCG(∆

2
).

We can write the matrix elements of the EMT in terms of LFWFs:

Mµν

λ,λ′ =
∑

λ1λ2λ′
1

∫
[dn]

[
ϕ
∗λ′
λ1,λ2

(x,κ
′⊥

)χ
†
λ′
1
Oµν

χλ′
1
ϕ
λ
λ′
1,λ2

(x,κ
⊥
)

]
,

where [dn] = dx d2κ⊥
8π3 .
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Mechanical Properties of a Dressed Quark State

Expressions for quark GFFs are:

Aq(∆
2
) =1 +

g2 CF

2π2

[
11

10
−

4

5

(
1 +

2m2

∆2

)
f2

f1
−

1

3
log

(
Λ2

m2

)]
,

Bq(∆
2
) =

g2CF

12π2

m2

∆2

f2

f1
,

Dq(∆
2
) =

5g2CF

6π2

m2

∆2

(
1− f1f2

)
= 4 Cq(∆

2
),

Cq(∆
2
) =

g2CF

72π2

(
29− 30 f1 f2 + 3 log

(
Λ2

m2

))
,

where

f1 =
1

2

√
1 +

4m2

∆2
, f2 = log

(
1 +

∆2 (1 + 2f1)

2m2

)
,

CF is the colour factor and Λ is the ultra-violet cut-off.
[J. More, A. Mukherjee, S. Nair, and S. Saha (2022). Phys. Rev. D, 105(5):056017]
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Mechanical Properties of a Dressed Quark State

Expressions for gluon GFFs are:

AG(∆
2
) =

g2CF

8π2

[
29

9
+

4

3
ln

(
Λ2

m2

)
−
∫
dx

((
1 + (1− x)2

)
+

4m2x2

∆2 (1− x)

)
f̃2

f̃1

]
,

BG(∆
2
) =−

g2CF

2π2

∫
dx

m2x2

∆2

f̃2

f̃1
,

DG(∆
2
) =

g2CF

6π2

[
2m2

3∆2
+

∫
dx
m2

∆4

(
x
(
(2− x)∆2 − 4m

2
x
))] f̃2

f̃1
,

CG(∆
2
) =

g2CF

72π2

[
10 + 9

∫
dx

(
x−

4m2x2

∆2 (1− x)

)
f̃2

f̃1
− 3 ln

(
Λ2

m2

)]
,

where

f̃1 =

√
1 +

4m2x2

∆2 (1− x)2
,

f̃2 =ln

(
1 + f̃1

−1 + f̃1

)
,

CF is the colour factor and Λ is the ultra-violet cut-off.
[J. More, A. Mukherjee, S. Nair, and S. Saha (2023). Phys. Rev. D, 107(11):116005]
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Numerical analysis

GFFs: A(∆2) and B(∆2)
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Figure: 1. Plots of the GFF A(∆2) and B(∆2) as a function of ∆2. The dashed blue curve and the
dot-dashed magenta curve are for the quark (q) and gluon (g) form factors respectively. The solid black
curve is for the sum of quark and gluon (q + g) contribution. Herem = 0.3 GeV and Λ = 2 GeV.

∑
(i=q,G)

Ai(0) = 1,
∑

(i=q,G)

Bi(0) = 0.

Dressed electron in QED: [S J. Brodsky, D S. Hwang, B Q. Ma, and I. Schmidt (2001). Nucl. Phys. B, 593:311–335]
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Numerical analysis

GFF:D(∆2)
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Figure: 2. Plots of the GFFD(∆2) as a function of ∆2. The dashed blue curve and the dot-dashed
magenta curve are for the quark (q) and gluon (g) form factors respectively. The solid black curve is for the
sum of quark and gluon (q + g) contribution. Herem = 0.3 GeV and Λ = 2 GeV.
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Numerical analysis

Comparison of electron D-term with Metz et al.
MPR: [A. Metz, B. Pasquini, and S. Rodini (2021). Phys. Lett. B, 820:136501]
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Figure: 3. Plot of photon GFF Dγ(∆
2) and De(∆

2) as function of ∆2. Here, we setm = 0.511 MeV,
α = 1

137 .

The D-term for the electron dressed with a photon has been calculated by Metz et al. using the
Feynman diagram method. We have calculated using the Light-Front Wave Function (LFWF) in the
QED limit.
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Numerical analysis

GFF: C(∆2)
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Figure: 2. Plots of the GFF C(∆2) as a function of ∆2. The dashed blue curve and the dot-dashed
magenta curve are for the quark (q) and gluon (g) form factors respectively. The solid black curve is for the
sum of quark and gluon (q + g) contribution. Herem = 0.3 GeV and Λ = 2 GeV.∑

(i=q,G)

Ci(∆
2
) =0 (Expected!)

∑
(i=q,G)

Ci(0) =0 (Our case)

Non-diagonal matrix element:

2g
(
∂
i
A

j
a

) 1

∂+

(
ξ
†
T

a
ξ
)

(Zero modes: k+ = 0)
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Numerical analysis

Pressure and Shear Force Distributions
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Figure: 4. Plots of the pressure distribution 2πb⊥ p(b⊥) and the shear force distribution 2πb⊥ s(b⊥) as a
function of b⊥. The dashed blue curve and the dot-dashed magenta curve are for the quark (q) and gluon
(g) contributions respectively. The solid black curve is for the sum of quark and gluon (q + g) contribution.
Here σ = 0.2.

Von Laue stability condition: ∫
d
2
b
⊥
p(b

⊥
) = 0.

[A. Freese and G A. Miller (2021). Phys. Rev. D, 103:094023]
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Numerical analysis

Normal and Tangential Force Distributions
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Figure: 5. Plots of the normal force Fn(b⊥), and the tangential force Ft(b⊥) as a function of b⊥. The
dashed blue curve and the dot-dashed magenta curve are for the quark (q) and gluon (g) contributions
respectively. The solid black curve is for the sum of quark and gluon (q + g) contributions. Here σ = 0.2.
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Numerical analysis

Two-Dimensional Energy Density
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Figure: 6. Plot of the energy density µ(b⊥) as a function of b⊥. The dashed blue curve and the dot-dashed
magenta curve are for the quark (q) and gluon (g) contributions respectively. The solid black curve is for the
sum of quark and gluon (q + g) contribution. Here σ = 0.2.

µi(b
⊥
) = m

[
1

2
Ai(b

⊥
) + Ci(b

⊥
) +

1

4m2

1

b⊥
d

db⊥

(
b
⊥ d

db⊥

[
1

2
Bi(b

⊥
)− 4Ci(b

⊥
)

])]
[C. Lorcé, H. Moutarde, and A P. Trawiński (2019). Eur. Phys. J. C, 79(1):89]
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Conclusions

Conclusions

We discussed the mechanical properties of nucleons through the matrix elements of the
energy-momentum tensor.

We use the light-front coordinates and the two-component light front QCD with light front gauge
A+ = 0.

We have studied the Gravitational Form Factors (GFFs), which originate from a symmetric
Energy-Momentum Tensor (EMT), for a composite spin- 1

2
state i.e., the dressed quark state.

This state includes the quark-gluon interaction at one loop in QCD which enables us to study the
GFFs in the presence of interaction.

We have also analysed the mechanical properties like pressure and shear stress distributions in this
state which gave an intuitive picture of the spatial distributions in a two-particle relativistic composite
state.
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Thank you!



Back ups



The differential cross-section

dσ ∝
∣∣∣∣⟨kf , sf |jµ(0)|ki, si⟩ 1

Q2
⟨X|Jµ(0)|P, S⟩

∣∣∣∣2 ≈ Le
µνW

µν
,

where jµ = eψγµψ, with ψ as the lepton spinor and e is the electric charge, Jµ is the hadron current
and |X⟩ is the final state with momentum PX .
The lepton and the hadron tensor can be written as

L
e
µν =2

(
kfk

ν
i + k

µ
i k

ν
f −

(
kf · ki −m2

)
g
µν
)

W
µν

=W1(ν,Q
2
)

(
−gµν

+
qµqν

q2

)
+
W2(ν,Q

2)

M2
p

(
P

µ −
P · q
q2

q
µ

)(
P

ν −
P · q
q2

q
ν

)
,

In the laboratory frame, neglecting the proton mass the cross-section can be written as

dσ

dxdQ2
=

4πα2

Q4

[(
1 + (1− y)2

)
F1(x,Q

2
) +

(1− y)
x

(
F2(x,Q

2
)− 2xF1(x,Q

2
)
)]
,

where, x = Q2

2Mpν , y =
pi·q
pi·k

∣∣∣
lab

= ν
E , ν = E − E′, F1 = MpW1, F2 = νW2 = EyW2. The

kinematic region of ep→ eX is 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1 .

The functions Fi(x,Q
2)′s are called structure functions which parametrize the structure of the target

as seen by the virtual photon are functions of x and Q2 .



The point-like constituents also move parallel with the proton and
carry a fraction ξ of its momentum, i.e. p̂µq = ξpµi .

Applying the mass-shell condition for the outgoing quark we
have

p̂
′2
q = (pq + q)

2 =⇒ 2ξpi · q −Q2
= 0 =⇒ x = ξ.

e e

q q

q

p̂q p̂′q

ki kf

The cross-section for this electron-quark scattering is

d2σ̂

dxdQ2
=

4πα2

Q4

[
1 + (1− y)2

] 1

2
e
2
qδ(x− ξ).

Compare with

dσ

dxdQ2
=

4πα2

Q4

[(
1 + (1− y)2

)
F1(x,Q

2
) +

(1− y)
x

(
F2(x,Q

2
)− 2xF1(x,Q

2
)
)]
,

The structure functions in this simple model are

F̂2 = 2xF̂1 = xe2qδ(x− ξ).

This result suggests that the virtual photon probes a constituent quark with momentum fraction ξ = x.



The quarks carry a range of momentum fractions. We can assign a PDF fq(ξ)dξ to find a quark q
with momentum fraction between ξ and ξ + dξ, where 0 ≤ ξ ≤ 1.

Figure: Measurement of F ep
2 (x,Q2) as a function of x for deep inelastic scattering events with

2 < Q2/GeV2 < 30 at SLAC, [L. W. Whitlow et. al. (1979). Phys. Rev. D, 20:1471-1552], [A. Bodek et al. (1979). Phys. Rev. D,

20:1471–1552]. Image source: [M. Thomson (2013). Cambridge University Press, New York].

An important assumption of electron-proton DIS is that the virtual photon scatters incoherently off
the individual quarks.

Callan-Gross relation: F2(x) = 2xF1(x) =
∑
q

∫ 1

0

dξf
q
(ξ)xe

2
qδ(x− ξ) =

∑
q

e
2
q xf

q
(x).

This is known as the ‘naive parton model’ [R. P. Feynman (1973), Photon-hadron interaction].

http://dx.doi.org/10.1103/PhysRevD.20.1471


The RR → RR and LL → LL configurations occur where the total angular momentum in the
z−direction is zero, where z is the direction along the incoming electron.

Figure: Helicity combinations contributing to the e q → e q process in ultra-relativistic limit. Image
source: [M. Thomson (2013). Cambridge University Press, New York].

The RL→ RL and LR → LR configurations transition from Jz = ±1 to Jz′ = ±1, where z′ is
along the outgoing electron. This depends on dj

λ,λ′ (θ) = ⟨j, λ′|e−iθJy |j, λ⟩, with y perpendicular
to the interaction plane and θ the center-of-mass scattering angle. In COM frame

d
1
1,1(θ) = d

1
−1,−1(θ) =

1

2
(1 + cos θ) = (1− y) ,

Electron-quark cross-section:
d2σ̂

dxdQ2
=

4πα2

Q4

 1︸︷︷︸
(same helicity)

+ (1− y)2︸ ︷︷ ︸
(opp. helicity)

 1

2
e
2
qδ(x− ξ).



Experimental measurement of this relation:

Figure: Experimental measurement of Callan-Gross relation at SLAC, [L. W. Whitlow et. al. (1979). Phys. Rev. D,

20:1471-1552], [A. Bodek et al. (1979). Phys. Rev. D, 20:1471–1552]. Image source: [M. Thomson (2013). Cambridge University Press, New

York].

The Callan-Gross relation follows from the fact that spin− 1
2
quarks can only absorb a transversely

polarized virtual photon.

This head-on collision of electron and quark is mediated by a photon of spin−1. This can be
explained by helicity conservation only if the quark has spin 1

2 .

http://dx.doi.org/10.1103/PhysRevD.20.1471


A proton target with its charge quark flavours, we can write

F2(x) = x

[
4

9
(u(x) + u(x)) +

1

9

(
d(x) + d(x) + s(x) + s(x)

)]
,

where q(x), q(x), {q(x) = u(x), d(x), s(x)} are the PDFs of different flavours of quarks and
anti-quarks within the proton.

PDFs cannot be derived from first principles because the QCD coupling is large, αS ∼ O(1), making
perturbation theory inapplicable. PDFs can only be extracted from experiments.
[A D. Martin, W J. Stirling, and R G. Roberts (1994). Phys. Rev. D, 50:6734–6752]

The proton consists of three valence quarks (uud) with electric charge and baryon quantum number,
plus an infinite sea of light qq pairs. Assuming the sea is symmetric in all quark flavours at a scale of
O(1 GeV), we would have

u(x) = uv(x) + S(x), d(x) =dv(x) + S(x),

S(x) = us(x) = us(x) = ds(x) =d(x) = ss(x) = ss(x),

with the sum rules∫ 1

0

dx uV (x) = 2,

∫ 1

0

dx dV (x) = 1,

∫ 1

0

dx x [uV (x) + dV (x) + 6S(x)] ≈ 0.5.

Quarks carry 50% of a proton’s momentum, with the rest due to gluons, which are seen in
high-energy processes like large transverse momentum jets and heavy quark production.

http://dx.doi.org/10.1103/PhysRevD.50.6734


At low Q2 the virtual photon has a long wavelength, so resolving any sub-structure below a certain
length scale is impossible.

Whereas, at highQ2, due to the shorter wavelength of the virtual photon it can resolve finer details.

Gluon radiation (γ∗q → qg) cross-section to the parton model cross-section

pT

pL

or

(a)

(b)

Figure: (a) Parton model diagram without transverse momentum. (b) Gluon radiation diagrams with
non-zero transverse momentum jets.



The QCD modified structure function is given by

F2(x,Q
2)

x

∣∣∣∣∣
(γ∗q→qg)

=
∑
q

e
2
q

∫ 1

x

dξ

ξ
q0(ξ)

δ(1− x

ξ

)
+
αs

2π
Pqq

(
x

ξ

)
log

Q2

κ2︸ ︷︷ ︸
(gluon emission)

 ,
where q0(ξ) is the bare quark PDF and κ is cut-off on the transverse momentum to regularize the
divergence at p2T → 0, which is called collinear divergence.
The splitting function Pqq(z) has the following form

Pqq(z) =
4

3

(
1 + z2

1− z

)
,

and represents the probability of a quark emitting a gluon and becoming a quark with momentum
reduced by a fraction of z.

The limit p2T → 0, when the gluon is emitted parallel to the quark, corresponds to a long-range (soft)
part of the strong interaction which is not calculable from perturbation theory.



We absorb the collinear singularities into the bare distribution at a factorization scale µ and define a
modified quark PDF

q
(
x, µ

2
)

=q0(x) +
αs

2π

∫ 1

x

dξ

ξ
q0(ξ)Pqq

(
x

ξ

)
log

µ2

κ2
.

Define the point-like form factor as

F2(x,Q
2)

x
=
∑
q

e
2
q

(
q(x, µ

2
) + ∆q(x,Q

2
, µ

2
)
)
,

where

∆q(x,Q
2
, µ

2
) =

αs

2π
log

(
Q2

µ2

)∫ 1

x

dξ

ξ
q(ξ, µ

2
)Pqq

(
x

ξ

)
,

this indicated the quark PDFs are now dependent on Q2 and also the factorization scale µ.

The ability to separate short- and long-distance (non-perturbative) contributions to structure
functions is a fundamental property called Collinear factorization.
Altarelli-Parisi evolution equation

d

d logQ2
q(x,Q

2
, µ

2
) =

αs

2π

∫ 1

x

dξ

ξ
q(ξ, µ

2
)Pqq

(
x

ξ

)
.

A quark with momentum fraction x may come from a quark with fraction ξ that radiated a gluon,
with probability proportional to αsPqq(x/ξ).



A gluon-initiated process where a gluon produces a quark-antiquark pair to which the virtual photon
couples

+

Figure: O(ααs) contributions (γ∗g → qq) to DIS.

F2(x,Q
2)

x

∣∣∣∣∣
(γ∗g→qq)

=
∑
q

e
2
q

∫ 1

x

dξ

ξ
g(ξ, µ

2
)
αs

2π
Pqg

(
x

ξ

)
log

(
Q2

µ2

)
,

where g(ξ, µ2) is gluon PDF and the splitting function is given by

Pqg(z) =
1

2

[
z
2
+ (1− z)2

]
,

represents the probability of finding a qq pair with momentum fraction z of the momentum of the
gluon from which the pair has created.



Evolution of gluon PDF

+
qi(ξ,Q

2)

g(x,Q2)

g(ξ,Q2)

g(x,Q2)

d

d logQ2
g(x,Q

2
, µ

2
) =

αs

2π

∫ 1

x

dξ

ξ

[∑
i

qi(ξ,Q
2
, µ

2
)Pgq

(
x

ξ

)
+ g(ξ,Q

2
, µ

2
)Pgg

(
x

ξ

)]

where the sum i = 1 . . . 2nf runs overall flavours of quark and anti-quark flavours and the splitting
functions are given by

Pgq(x) =
4

3

1 + (1− z)2

z
,

Pgg(x) =6

[
1− z
z

+
z

1− z
+ z(1− z)

]
.

Image source: BNL photo albums

https://www.flickr.com/photos/brookhavenlab/albums/72157714316624996/


The LFQCD Hamiltonian can be written in terms of these two-component fields in the following way

H =

∫
dx

−
d
2
x

⊥
(H0 +Hint) ,

where

H0 =
1

2

(
∂
i
A

j
a

)(
∂
i
A

j
a

)
+ ξ

†
(
−∂⊥2 +m2

i∂+

)
ξ,

Hint =Hqqg +Hggg +Hqqgg +Hqqqq +Hgggg,

and

Hqqg = gξ
†
[
− 2

(
1

∂+

)(
∂
⊥ ·A⊥

)
+ σ

⊥ ·A⊥
(

1

∂+

)(
σ

⊥ · ∂⊥
+m

)
+

(
1

∂+

)(
σ

⊥ · ∂⊥ −m
)
σ

⊥ ·A⊥
]
ξ,

Hggg = gf
abc

[
∂
i
A

j
aA

i
bA

j
c +

(
∂
⊥ ·A⊥

)( 1

∂+

)(
A

j
b∂

+
A

j
c

)]
,

Hqqgg = g
2

[
ξ
†
(
σ

⊥ ·A⊥
)( 1

i∂+

)(
σ

⊥ ·A⊥
)
ξ

+ 2

(
1

∂+

)(
f
abc

A
i
b∂

+
A

i
c

)( 1

∂+

)(
ξ
†
t
a
ξ
)]

=Hqqgg1 +Hqqgg2,

[W M. Zhang and A. Harindranath (1993). Phys. Rev. D, 48:4881–4902]

http://dx.doi.org/10.1103/PhysRevD.48.4881


The LFQCD Hamiltonian can be written in terms of these two-component fields in the following way

H =

∫
dx

−
d
2
x

⊥
(H0 +Hint) ,

where

H0 =
1

2

(
∂
i
A

j
a

)(
∂
i
A

j
a

)
+ ξ

†
(
−∂⊥2 +m2

i∂+

)
ξ,

Hint =Hqqg +Hggg +Hqqgg +Hqqqq +Hgggg,

Hqqqq = 2g
2

[(
1

∂+

)(
ξ
†
t
a
ξ
)( 1

∂+

)(
ξ
†
t
a
ξ
)]
,

Hgggg =
g2

4
f
abc

f
ade

[
A

i
bA

j
cA

i
dA

j
e

+ 2

(
1

∂+

)(
A

i
b∂

+
A

i
c

)( 1

∂+

)(
A

j
d∂

+
A

j
e

)]
,

=Hgggg1 +Hgggg2.

[W M. Zhang and A. Harindranath (1993). Phys. Rev. D, 48:4881–4902]

http://dx.doi.org/10.1103/PhysRevD.48.4881


The matrix elements of the energy-momentum tensor (EMT) of QCD are essential for addressing
these questions.

T
µν
q =

1

2
ψq

[
γ
µ
iD

ν
+ γ

ν
iD

µ]
ψq,

T
µν
G = − Faµλ

F
aν
λ +

1

4
g
µν
(
F

aλσ
)2
− gµν

ψq

(
iγ

λ
Dλ −m

)
ψq,

Covariant derivative: iDµ = i
←→
∂ µ + gAµ, α

(
i
←→
∂ µ
)
β = i

2α (∂µβ)− i
2 (∂µα) β,

Fµν
a = ∂µAν

a − ∂
nuAµ

a + gfabcA
µ
bA

ν
c .

Parameterizing the EMT for a spin- 1
2
system can be achieved in terms of four gravitational form

factors (GFFs) [M V. Polyakov and P. Schweitzer (2018). Int. J. Mod. Phys. A, 33(26):1830025]

⟨p′, λ′|Tµν
i (0)|p, λ⟩

=u(p
′
, λ

′
)

[
− Bi(∆

2
)
PµP ν

M
+
(
Ai(∆

2
) + Bi(∆

2
)
) 1

2

(
γ
µ
P

ν
+ γ

ν
P

µ)
+ Ci(∆

2
)
∆µ∆ν −∆2gµν

M
+ Ci(∆

2
)Mg

µν

]
u(p, λ),

Gordon decomposition:

u(p
′
, λ)

[
P

µ
iσ

νλ
∆λ + P

ν
iσ

µλ
∆λ

]
u(p, λ) = u(p

′
, λ)

[
2M

(
γ
µ
P

ν
+ γ

ν
P

µ
)
− 4P

µ
P

ν
]
u(p, λ).

Conservation of total energy-momentum tensor (EMT) rules out terms like (P
µ
∆ν + ∆µP

ν
) and

(γµ∆ν + γν∆µ) also puts a constraint∑i Ci(∆
2) = 0.

http://dx.doi.org/10.1142/S0217751X18300259


In the usual Hamiltonian dynamics, one works with a set of generalized coordinates with initial
conditions defined at some instant of time, preferably at x0 = 0.

g
00

=1, g
ii

= −1, i = (1, 2, 3)

g
µν

=0, (µ ̸= ν),

one can parameterize the space-time by a functional relation

x̃
ν
= x̃

ν
(x

µ
),

provided the inverse xµ(x̃ν) also exists as well.
The transformation of coordinates conserves the arc length, i.e. (ds)2 = gµνdx

µdxν = g̃µνdx̃
µdx̃ν .

g̃ηλ =

(
∂xµ

∂x̃η

)
gµν

(
∂xµ

∂x̃λ

)
The four-volume elements of the two parametrizations are related by the Jacobian J (x̃) with
d4x = J (x̃)d4x̃.



The Poincaré algebra can be written in terms of four vector Pµ and generalized angular momentum
Mµν : [

P
µ
, P

ν]
=0,[

M
µν
, P

ρ]
=i
(
g
µρ
P

ν − gνρ
P

µ)
,[

M
µν
,M

ρσ]
=i
(
g
µρ
M

νσ − gµσ
M

νρ − gνρ
M

µσ
+ g

νσ
M

µρ)
,

where Pµ are the generators of translation andMµν are the generators of the Lorentz group.

The rotation and the boost operator are defined asMij = ϵijkJ
k andM0i = Ki respectively

which obey the commutation relations given by[
J

i
, J

j
]
= iϵijkJ

k
,
[
J

i
, K

j
]
= iϵijkK

k
,
[
K

i
, K

j
]
= −iϵijkJk

The momentum and the generalized angular momentum tensor can be defined in terms of the
energy-momentum tensor of a theory as follows

P
µ

=

∫
d
3
x T

0µ

M
µν

=

∫
d
3
x
[
x
µ
T

0ν − xν
T

0µ
]
.



The differential cross-section for DIS

dσ ∝
∣∣∣∣⟨kf , sf |jµ(0)|ki, si⟩ 1

Q2
⟨X|Jµ(0)|P, S⟩

∣∣∣∣2 ≈ Le
µνW

µν
.

The hadron tensor can be written as

W
µν

(P, S, PX) =
1

4πMp

∑
X

∫
d3P x

(2π)33P 0
X

⟨P, S|Jµ
(0)|X⟩⟨X|Jν

(0)|P, S⟩(2π)4

δ
(4)

(P + q − PX) ,

=
1

2π

∫
d
4
ξ e

iq·ξ⟨P, S|
[
J

µ
(ξ), J

ν
(0)
]
|P, S⟩.

In the Bjorken limit we have q− →∞ and the large oscillations in the exponential
eiq·ξ = e

i
(
q+ξ−+q−ξ+

)
make the integral vanish unless ξ+ → 0.

Now ξ2 ≥ 0, since no space-like separation between the two currents.

But ξ+ → 0 imples ξ2 = 0, it is a light-cone separation.



The generalized parton distribution functions

Φ
[Γ]

(x, ξ, t) =
1

2

∫
dz−

2π
e
ixP+z− ⟨p′|ψ

(
−

1

2
z

)
ΓU[− z

2
, z
2

]ψ
(

1

2
z

)
|p⟩

∣∣∣∣∣
z+=0.z⊥=0

,

Γ : Dirac matrix and U[− z
2
, z
2 ]

: Gauge link.

GPDs

x + ξ x− ξ

γ∗
γ

p p′

e

e′

The gauge link

U[− z
2
, z
2

] = P exp

[
−ig

∫ z
2

− z
2

dη
µ
Aµ(η)

]

=

∞∑
n=0

1

n!
(−ig)n P

∫ z
2

− z
2

dη
µn
n . . . dη

µ1
1 Aµn (ηn) . . . Aµ1

(z1),

P denotes path ordering from − z
2
to z

2
.

Exchange of more than two gluons is suppressed except for gluons with longitudinal polarization.

In light cone gauge A+ = 0, the gauge link becomes unity.



Now suppose the electron is interacting with an external electromagnetic field Aµ, then the term
corresponds to the second term will have an amplitude

T
(2)
fi = ie

∫
d
4
x

1

2m

(
uf iσ

µν
qνui

)
Aµ e

iq·x
=

ie

2m

∫
d
4
x (ufσµνui)

1

2
F

µν
e
iq·x

.

Now if we note that F 23 = B(1), F 31 = B(2), F 12 = B(3) and
σ23 = σ(1), σ31 = σ(2), σ12 = σ(3), where B is the magnetic field and σ(1), σ(2), σ(3) are Pauli
sigma matrices. Then the above equation becomes

T
(2)
fi =

i

2

∫
d4x uf

( e

2m
σ ·B

)
ui e

iq·x. (1)



Figure: Left: Different proton PDFs at Q2 = 10 GeV2. Right: Evolving picture of proton.

Image source: BNL photo albums

https://www.flickr.com/photos/brookhavenlab/albums/72157714316624996/


A form factor accounts for the phase differences in scattered waves
from various points on the target.

At low electron energies, the wavelength of the virtual photon
λ >> rp. The ep scattering can be described as the elastic
scattering of the electron from a static potential of a proton.

J
µ
p =(Ze ρ(x), 0) ,

F (q) =

∫
d
3
x ρ(x)e

iq·x
.

At higher electron energies, the wavelength of the virtual photon
λ ∼ rp. The ep scattering needs to include effects from extended
charge as well as magnetic distributions of the proton.

Image source: [M. Thomson (2013). Cambridge University Press, New York]



Dispersion relation

Simple dispersion relation: p− = p⊥2+m2

p+
.

The dependence of light-front energy p− to the transverse momentum p⊥ is similar to the
non-relativistic dispersion relation.
With positive energy p− we will always have positive p+. This fact has implications for
simplifying the vacuum of the theory in light-front.
For eg. in instant form [

a(−p2)a
†
(p2)

] [
a(−p1)a

†
(p1)

]
|0⟩,

there is a finite overlap between the ground state of the free theory and the interaction theory

e
−iHt|0⟩ = e

−iE0t|Ω⟩⟨Ω|0⟩+
∑
n ̸=0

e
−iEnt|n⟩⟨n|0⟩,

where |Ω⟩ is the ground state of the Hamiltonian with interaction (H), En are the eigenvalues
of the H and E0 = ⟨Ω|H|Ω⟩.
The light-front vacuum is less complicated than the instant form.



Observables for gravitational form factors

Graviton-proton scattering, as the EMT couples to the graviton.
[H. Pagels (1966). Phys. Rev., 144:1250–1260]

Image source: [M V. Polyakov and P. Schweitzer (2018). Int. J. Mod. Phys. A, 33(26):1830025]

Indirect methods have been developed to gather information about the matrix elements of the EMT
through studies of hard exclusive scatterings e.g. deeply virtual Compton scattering (DVCS).

GPDs

x + ξ x− ξ

γ∗
γ

p p′

e

e′

http://dx.doi.org/10.1103/PhysRev.144.1250
http://dx.doi.org/10.1142/S0217751X18300259


Generalized Parton Distributions

The parton distribution functions in DIS

f1(x) =

∫
dξ−

8π
e
− i

2
xP+ξ− ⟨P.S|ψq

(
0, ξ

−
, 0

⊥
)
γ
+
ψ

q
(0)|P, S⟩.

PDFs

γ∗ γ∗

P P

e

e′
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The generalized parton distribution functions

Φ
[Γ]

(x, ξ, t) =
1

2

∫
dz−

2π
e
ixP+z− ⟨p′|ψ

(
−

1

2
z

)
Γψ

(
1

2
z

)
|p⟩

∣∣∣∣∣
z+=0.z⊥=0

,

Γ : Dirac matrix. Finite momentum tansfer in transverse direction ∆⊥ FT←→ b⊥.

GPDs

x + ξ x− ξ

γ∗
γ

p p′

e

e′

GPDs depend on x, t, ξ

x =
k+ + k′+

p+ + p′+
, t = ∆

2
, ξ =

p+ − p′+

p+ + p′+
,

(Average longitudinal momentum fraction of a parton) (Four momentum squared) (Skewness parameter)

Define

P =
p+ p′

2
, ∆ = p

′ − p.



The generalized parton distribution functions

Φ
[Γ]

(x, ξ, t) =
1

2

∫
dz−

2π
e
ixP+z− ⟨p′|ψ

(
−

1

2
z

)
Γψ

(
1

2
z

)
|p⟩

∣∣∣∣∣
z+=0.z⊥=0

,

Γ : Dirac matrix.

Γ

γ+ Hq , Eq unpol.

γ+γ5 H̃q , Ẽq long. pol

σ+i Hq
T , E

q
T , H̃

q
T , Ẽ

q
T transv. pol.

Impact parameter dependepnt parton distribution function

q(x, b
⊥
) =

∫
d2∆⊥

(2π)2
e
−ib⊥·∆⊥

H
q
(
x, 0,∆

⊥2
)
.



Gravitational form factors from GPDs

The use of GPDs to address the physical content of GFFs was done by Ji in the context of the angular
momentum decomposition of nucleons.∫ 1

−1

dx x
(
H

a
(x, ξ, t) + E

a
(x, ξ, t)

)
= A

a
(t) + B

a
(t),

where a = g, u, d, ... are type of partons. [X D. Ji (1997). Phys. Rev. Lett., 78:610–613]

The GPDs Hq(x, ξ, t) andEq(x, ξ, t) give access to the quark GFFs as follows∫ 1

−1

dx xH
q
(x, ξ, t) =A

q
(t) + ξ

2
D

q
(t),∫ 1

−1

dx xE
q
(x, ξ, t) =B

q
(t)− ξ2Dq

(t).

[M V. Polyakov and P. Schweitzer (2018). Int. J. Mod. Phys. A, 33(26):1830025]

http://dx.doi.org/10.1103/PhysRevLett.78.610
http://dx.doi.org/10.1142/S0217751X18300259


Light Front Dynamics and Light Front QCD

According to Dirac there are practically three different parametrizations which are not accessible by a
Lorentz transformation. [P A M. Dirac (1949). Rev. Mod. Phys., 21:392–399]

Figure: Three different forms of Hamiltonian dynamics. Image source [S J. Brodsky, H C. Pauli, and S S. Pinsky

(1998). Phys. Rept., 301:299–486].

Different parametrizations have their own Hamiltonian and thus according to Dirac, it is called
different forms of Hamiltonian dynamics.

http://dx.doi.org/10.1103/RevModPhys.21.392
http://dx.doi.org/10.1016/S0370-1573(97)00089-6


Light-front QCD

According to the factorization theorem, for large momentum transfer, hadronic structure functions
split into a hard, perturbative part and a soft, nonperturbative part that reflects the low-energy
properties of the hadron’s quarks and gluons. [J C. Collins, D E. Soper, and G F. Sterman (1989). Adv. Ser. Direct. High Energy

Phys., 5:1–91]

F1(x) =
∑
q

e2q

2
f1q(x),

F2(x) =
∑
q

e
2
q x f1q(x). PDFs

γ∗ γ∗

P P

e

e′

The f1(x) function has the explicit form

f1(x) =

∫
dξ−

8π
e
− i

2
xP+ξ− ⟨P, S|ψq

(
0, ξ

−
, 0

⊥
)
γ
+
ψ

q
(0)|P, S⟩,

where, γ+ = γ0 + γ3.

Nonperturbative QCD dynamics, interpreted through parton
distribution functions, is primarily governed by the noncollinear
motion of low-energy quarks and gluons.

Image source: [M. Thomson (2013). Cambridge University Press, New York]

http://dx.doi.org/10.1142/9789814503266_0001
http://dx.doi.org/10.1142/9789814503266_0001


Light front QCD Hamiltonian

Traditionally the light-front Hamiltonian is defined in a Lorentz invariant way as
HLF = PµPµ = P−P+ − P⊥, where P− = P 0 − P 3 is the light-front time evolution operator,
P+ = P 0 + P 3 and P⊥ are longitudinal and transverse momentum respectively.

We will denote P− asH and call it the LFQCD Hamiltonian, which satisfies the eigenvalue equation

H |ψ⟩ =
M2 + P⊥2

P+
|ψ⟩,

and generates light-front time translation.
H can be calculated from the QCD Lagrangian

L = −
1

2
Tr
(
F

µν
Fµν

)
+ ψ

(
iγµD

µ −m
)
ψ.



Bound State of Hadron

Equal time approach

Solving relativistic bound state is equivalent to
solving

H |Ψ⟩ =
√
M2 + P 2 |Ψ⟩

We can expand |Ψ⟩ in terms of multi-parton
Fock states as described by Tamm and Dancoff
but has a complicated non-covariant structure.
[I. Tamm (1945). J. Phys. (USSR), 9:449] [S M. Dancoff (1950). Phys.

Rev., 78:382–385]

Vacuum is complicated.

The square root operator poses serious
mathematical problems.

The problem can be solved at the rest frame of
the particle, however, the boosted wavefunction
contains complex dynamical problems.

Light front approach

One aims to solve the Hamiltonian
eigenvalue problem

H |Ψ⟩ =
M2 + P⊥2

P+
|Ψ⟩.

We can also expand |Ψ⟩ in terms of
multi-parton Fock states in terms of light
front wavefunction describes a fully
relativistic system.

Vacuum is less complicated.

There is no square root operator in the
equation.

The boost operators are kinematic so the
boosted wavefunction does not have
complex dynamical problems.

http://dx.doi.org/10.1103/PhysRev.78.382
http://dx.doi.org/10.1103/PhysRev.78.382


Any hadronic bound state |Ψ⟩ of massM must be an eigenstate of the light front Hamiltonian HLF
satisfying the eigenvalue equation

(
HLF −M2

)
|Ψ⟩ = 0,

H |Ψ⟩ =
M2 + P⊥2

P+
|Ψ⟩.

|Ψ⟩ can be expanded in terms of a complete set of functions |ni⟩∫
[dni] |ni⟩⟨ni| = 1,

where [dni] is the phase-space differential.
The projection of |Ψ⟩ onto the basis states |ni⟩ are called light front wavefunctions (LFWF)

Ψn(ni) ≡ ⟨ni|Ψ⟩,

thus we can write

|Ψ⟩ =
∑
i

∫
[dni] |ni⟩⟨ni|Ψ⟩.



We can construct the complete basis Fock states |ni⟩ by applying the free field creation operators to
the vacuum |0⟩

|q : k
+
, k

⊥
, λ⟩ = b

†
λ(k)|0⟩,

|qq : k
+
i , k

⊥
i , λi⟩ = b

†
λ1

(k1)b
†
λ2

(k2)|0⟩,

|qqg : k
+
i , k

⊥
i , λi⟩ = b

†
λ1

(k1)b
†
λ2

(k2)a
†
λ3

(k3)|0⟩,

|qq : k
+
i , k

⊥
i , λi⟩ = b

†
λ1

(k1)d
†
λ2

(k2)|0⟩,

· · · so on.

The operators here b†(k), d†(k) create bare leptons and anti-leptons and a†(k) create bare vector
bosons with corresponding helicities λi.
Each Fock state |ni⟩ = |ni; k

+
i ,k

⊥
i , λi⟩ is an eigenstate of the operators P+ and P⊥ with

eigenvalues

P
+ |ni⟩ =

(∑
i

k
+
i

)
|ni⟩, P

⊥ |ni⟩ =
(∑

i

k
⊥
i

)
|ni⟩ with k+i > 0.

The vacuum has the eigenvalues 0, P+ |0⟩ = 0, P⊥ |0⟩ = 0.



We can define boost invariant longitudinal momentum fractions xi and relative transverse momentum
κ⊥

i as

xi =
k+i
P+

, with 0 < x < 1,

k
⊥
i = xiP

⊥
+ κ

⊥
i

In this notation particles in the Fock state have four-momentum

k
µ
i ≡

(
k
+
i ,k

⊥
i , k

−
)

=

xiP
+
, xiP

⊥
+ κ

⊥
i ,

m2
i +

(
xiP

⊥ + κ⊥
i

)2

xiP+

 ,

and are on-shell i.e. kµkµ = m2
i .

The value of xi and κ⊥
i are constrained by∑

i

xi = 1,
∑
i

κ
⊥
i = 0.



The eigenvalue equation

H |Ψ⟩ =
M2 + P⊥2

P+
|Ψ⟩.

becomes∑
i

∫
[dni] ⟨ni; xi,κ

⊥
i , λi|H |ni; xi,κ

⊥
i , λi⟩Ψn

(
xi,κ

⊥
i , λi

)
=
M2 + P⊥2

P+
Ψn

(
xi,κ

⊥
i , λi

)
,

for i = 1, . . . ,∞.
The phase-space differential as

[dni] = δ

(
1−

∑
i

xi

)
δ

(∑
i

κ
⊥
i

)∏
i

dxi d
2
κ

⊥
i ,



Light Front Dynamics and Light Front QCD

Discovery of partons

The nucleon’s response in DIS is described by structure functions
dependent on the Lorentz invariants pi · q and Q2 = −q2, where pµi
is the nucleon four momentum and qµ is the four-momentum
transfer.

Bjorken scaling was observed in inclusive deep inelastic scattering
(DIS) experiments at SLAC in 1969.
[J D. Bjorken (1969). Phys. Rev., 179:1547–1553]

Bjorken scaling is the property that, in the high-energy limit
pi · q →∞ and Q2 →∞ with the ratio x = Q2

2pi·q
fixed, the

structure functions are functions of x, which satisfies 0 < x < 1.

X

pi

kfki

q
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