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taken distinct from the one responsible for the e↵ec-
tive mass of the constituents. In particular, the dif-
ference between the two symmetric PDFs, i.e. uS(⇠)
and uLF

val
(⇠) (recall that has Pval = 0.7), can be traced

back to the non negligible probability of the higher
Fock states (HFS), where a qq̄ pair interacts by ex-
changing any number of gluons. Interestingly, the dif-
ference can be e↵ectively described only by a factor,
since it turns out that uLF

val
(⇠)/Pval largely overlaps

uS(⇠). Finally, also the small, but relevant, shift of
the quark PDF with respect to uS(⇠) has to be as-
cribed to the presence of HFS, as discussed in what
follows.
To get a qualitative view, we remind that the

pion state can be, in principle, decomposed in Fock-
components, which are schematically written in ladder
approximation as

|⇡i = |qq̄i+ |qq̄gi+ |qq̄ 2gi+ · · · (34)

Due to the charge symmetry, each Fock-component is
invariant by q $ q̄, and hence the valence state |qq̄i
provides a symmetric contribution to uq(⇠), identified
with uLF

val
(⇠). The following terms contain gluons up

to infinity. In our model, the gluon has an e↵ective
mass about twice the quark mass, so that the HFS cu-
mulative e↵ect results in a small shift of the uq(⇠) peak
at ⇠ < 1/2, as shown in the right panel of Fig. 1. Ac-
tually, a similar e↵ect, related to the increasing mass
of the remnant, can be also recognized in the nucleon,
where one has a valence parton distribution with a
peak around 1/3 due to the presence of the other two
constituent quarks. In the case of the pion, the e↵ect
is small since the valence component |qq̄i has 70% of
probability (as generated by our dynamical calcula-
tion), and hence is largely dominant.

To become more quantitative and illustrate this ef-
fect, we schematically write the quark PDF by using
the Fock expansion of the pion state, Eq. (34), and
inserting LF variables [79], one has
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where ⇠1(2) is the longitudinal-momentum fraction
of the quark (antiquark) in each Fock state, com-
posed by a qq̄ pair and n � 2 gluons, generated by
the iteration of the one-gluon exchange. Moreover,

 n(⇠1,k1?, ⇠2,k2?, ...) is the probability amplitude of
the corresponding Fock component and fulfills a nor-
malization condition that follows from the one of the
pion state. In the n-th state one has

⇠1 = 1� ⇠2 �
nX

g=3

⇠g . (36)

Since ⇠i > 0 for massive particles, the average value
of ⇠1 starts to decreases while the number of gluons
increases, as quantitatively shown in what follows.

Looking at the right panel of Fig. 1, one can realize
that while the valence term, with probability Pval =
0.7, has a peak at ⇠1 = ⇠2 = 1/2, given the symmetry
of | 2(⇠1,k1?, ⇠2,k2?)|2 all the HFS shift the peak to
⇠1 < 1/2, and decrease the tail, due to the constraint
of the overall normalization. This is reflected in the
evaluation of the first moment (recall ⇠q ⌘ ⇠1)

h⇠qi = Pval h⇠qival +
X

n>2

Pn h⇠qin

= Pval h⇠qival + (1� Pval) h⇠qiHFS , (37)

where Pn is the probability of the n-th Fock state
beyond the valence one. The first term in Eq. (37)
is equal to 0.35, since 1/2 is weighted by Pval, and
the rest is weighted by 0.3. Notice that for each HFS,
normalized to 1, one has

h⇠qin = 1� h⇠q̄in �

nX

i=3

h⇠giin

= 1� h⇠q̄in � (n� 2)h⇠gin , (38)

where the gluon bosonic nature leads to the factor
n� 2.

The actual value of the first moment of uq(⇠) is

h⇠qi =

Z 1

0
d⇠

Z 1

0
d� ⇠ fq

1 (�, ⇠) = 0.471 , (39)

that amounts to an average of h⇠qiHFS equal to 0.40.
We can further analyse h⇠qiHFS , aiming at extract-

ing a quantitative estimate of the exchanged-gluon
contribution, h⇠gi. From the momentum sum rule
Eq. (37), and recalling Eq. (36), we get

h⇠qiHFS =
1

1� Pval

X

n>2

Pn h⇠qin

= 1� h⇠q̄iHFS � h⇠gi , (40)

where

h⇠gi =
1

1� Pval

X

n�3

Pn(n� 2) h⇠gin . (41)

Pion  - Interesting?
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How to look in Detail?
Observables associated with the hadron structure

Lorcé, Pasquini, Vanderhaeghen JHEP05(2011)041

l Pion: SL form factor, PDF, TMD &  3D image

JHEP05(2011)041
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Figure 1. Representation of the projections of the GTMDs into parton distributions and form
factors. The arrows correspond to di↵erent reductions in the hadron and quark momentum space:
the solid (red) arrows give the forward limit in the hadron momentum, the dotted (black) arrows
correspond to integrating over the quark transverse-momentum and the dashed (blue) arrows project
out the longitudinal momentum of quarks. The di↵erent objects resulting from these links are
explained in the text.

on the 4-momentum � which is transferred by the probe to the hadron; for a classification
see refs. [1, 2]. They have a direct connection with the Wigner distributions of the parton-
hadron system [3–5], which represent the quantum-mechanical analogues of the classical
phase-space distributions.

When integrating the GPCFs over the light-cone energy component of the quark mo-
mentum one arrives at generalized transverse-momentum dependent parton distributions
(GTMDs) which contain the most general one-body information of partons, corresponding
to the full one-quark density matrix in momentum space. The GTMDs reduce to di↵erent
parton distributions and form factors as is shown in figure 1. The di↵erent arrows in this
figure represent particular projections in the hadron and quark momentum space, and give
the links between the matrix elements of di↵erent reduced density matrices.

Such matrix elements can in turn be parametrized in terms of generalized parton
distributions (GPDs), transverse-momentum dependent parton distributions (TMDs) and
generalized form factors (FFs). These are the quantities which enter the description of
various exclusive (GPDs), semi-inclusive (TMDs), and inclusive (PDFs) deep inelastic scat-
tering processes, or parameterize elastic scattering processes (FFs). At leading twist, there
are sixteen complex GTMDs, which are defined in terms of the independent polarization
states of quarks and hadron. In the forward limit � = 0, they reduce to eight real TMDs
which depend on the longitudinal momentum fraction x and transverse momentum ~k?
of quarks, and therefore give access to the three-dimensional picture of the hadrons in
momentum space.

– 2 –
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Ø dressed quark-gluon vertex

Ø dressed gluon propagator

BSE quark-antiquark & pion model

Ladder approximation (L): suppression of XL for Nc=3 in a bosonic system                             
[A. Nogueira, CR Ji, Ydrefors, TF, PLB777(2017) 207] 
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Fig. 1 The quark-gluon vertex
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enhancement occurs preferably at momenta of ∼ ΛQC D .
Furthermore, the vertex is enhanced when all momenta enter-
ing the vertex (see Fig. 1) tends to be parallel in pairs, solving
in this way the compromise that the momenta are restricted
to a region around ΛQC D . Within our solution for the quark-
gluon vertex, the dominant form factors are associated with
the tree level vertex γµ and the operator 2 pµ+qµ. The higher
rank tensor structures give sub-leading contributions to the
vertex.

In the current work, the vertex is written using the Ball-
Chiu construction. It is known that the Ball-Chiu vertex
has kinematical singularities for the Landau gauge [37] that
are associated to the transverse form factors (see definitions
below). These singularities can be avoided by considering
a different tensor basis for the full vertex as described, for
example, in [37]. However, the singularities are not associ-
ated to the longitudinal form factors and our calculation only
takes into account this class of form factors.

The paper is organised as follows. In Sect. 2 we intro-
duce the notation for the propagators, the Dyson–Schwinger
equations and the quark-gluon vertex. Moreover, we use a
Slavnov–Taylor identity to rewrite the vertex in terms of the
quark propagators functions and the quark-ghost kernel. The
parametrisation of the quark-ghost kernel is also discussed.
In Sect. 3 the scalar and vector components of the DSE in
Minkowski space are given, together with the corresponding
kernels. In Sect. 4 the DSE are rewritten in Euclidean space,
introduce the vertex ansatz and perform a scaling analysis of
the integral equations. In Sect. 5 we give the details of the
lattice data used in the current work for the various propa-
gators and on the functions that parametrise the lattice data.
The kernels for the Euclidean space DSE are discussed in
Sect. 6, together with the solutions for the vertex of the gap
equation. The quark-gluon vertex form factors are reported
in Sect. 7 for several kinematical configurations. Finally, on
Sect. 8 we summarise and conclude.

2 The quark gap equation and the quark-gluon vertex

In this section the notation used through out the article is
defined. In this first part of this work, the equations discussed
are written in Minkowski space with the diagonal metric g =
(1, −1, −1, −1). Let us follow the notation of [38] for the
quark-gluon vertex represented in Fig. 1 that considers all
momenta are incoming and, therefore, verify

p1 + p2 + p3 = 0. (1)

The one-particle irreducible Green’s function associated to
the vertex reads

Γ a
µ (p1, p2, p3) = g ta Γµ(p1, p2, p3), (2)

where g is the strong coupling constant and ta are the color
matrices in the fundamental representation.

The quark propagator is diagonal in color and its spin-
Lorentz structure is given by

S(p) = i
A(p2)/p − B(p2)

= i
A(p2)/p + B(p2)

A2(p2) p2 − B2(p2)

= i Z(p2)
/p + M(p2)

p2 − M2(p2)
, (3)

where Z(p2) = 1/A(p2) stands for the quark wave function
and M(p2) = B(p2)/A(p2) is the renormalisation group
invariant running quark mass.

The Dyson–Schwinger equation for the quark propagator,
also named the quark gap equation, is represented in Fig. 2
and can be written as

S−1(p) = −i Z2( /p − mbm) + Σ(p2), (4)

where Z2 is the quark renormalisation constant, mbm the bare
current quark mass and the quark self-energy is given by

Σ(p2) = Z1

∫
d4q

(2π)4

×Dab
µν(q) ( i g tbγν ) S(p − q) Γ a

µ (−p, p − q, q), (5)

where Z1 is a combination of several renormalisation con-
stants, Dab

µν(q) is the gluon propagator that, in the Landau
gauge, is given by

Dab
µν(q) = −i δab

(
gµν − qµqν

q2

)
D(q2) ; (6)

below both Dab
µν(q) and D(q2) will be referred to as the gluon

propagator.
A key ingredient in gap Eq. (4) is the quark-gluon vertex.

Indeed, it is only after knowing Γ a
µ or, equivalently Γµ, that

Z(p2) and M(p2) can be computed. The Lorentz structure

[
p

]−1 =
p

[ ]−1 +
p

q = p − k

k

Fig. 2 The Dyson–Schwinger equation for the quark. The solid blobs
denote dressed propagators and vertices

123
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are associated to the transverse form factors (see definitions
below). These singularities can be avoided by considering
a different tensor basis for the full vertex as described, for
example, in [37]. However, the singularities are not associ-
ated to the longitudinal form factors and our calculation only
takes into account this class of form factors.

The paper is organised as follows. In Sect. 2 we intro-
duce the notation for the propagators, the Dyson–Schwinger
equations and the quark-gluon vertex. Moreover, we use a
Slavnov–Taylor identity to rewrite the vertex in terms of the
quark propagators functions and the quark-ghost kernel. The
parametrisation of the quark-ghost kernel is also discussed.
In Sect. 3 the scalar and vector components of the DSE in
Minkowski space are given, together with the corresponding
kernels. In Sect. 4 the DSE are rewritten in Euclidean space,
introduce the vertex ansatz and perform a scaling analysis of
the integral equations. In Sect. 5 we give the details of the
lattice data used in the current work for the various propa-
gators and on the functions that parametrise the lattice data.
The kernels for the Euclidean space DSE are discussed in
Sect. 6, together with the solutions for the vertex of the gap
equation. The quark-gluon vertex form factors are reported
in Sect. 7 for several kinematical configurations. Finally, on
Sect. 8 we summarise and conclude.

2 The quark gap equation and the quark-gluon vertex

In this section the notation used through out the article is
defined. In this first part of this work, the equations discussed
are written in Minkowski space with the diagonal metric g =
(1, −1, −1, −1). Let us follow the notation of [38] for the
quark-gluon vertex represented in Fig. 1 that considers all
momenta are incoming and, therefore, verify

p1 + p2 + p3 = 0. (1)

The one-particle irreducible Green’s function associated to
the vertex reads

Γ a
µ (p1, p2, p3) = g ta Γµ(p1, p2, p3), (2)

where g is the strong coupling constant and ta are the color
matrices in the fundamental representation.

The quark propagator is diagonal in color and its spin-
Lorentz structure is given by

S(p) = i
A(p2)/p − B(p2)

= i
A(p2)/p + B(p2)

A2(p2) p2 − B2(p2)

= i Z(p2)
/p + M(p2)

p2 − M2(p2)
, (3)

where Z(p2) = 1/A(p2) stands for the quark wave function
and M(p2) = B(p2)/A(p2) is the renormalisation group
invariant running quark mass.

The Dyson–Schwinger equation for the quark propagator,
also named the quark gap equation, is represented in Fig. 2
and can be written as

S−1(p) = −i Z2( /p − mbm) + Σ(p2), (4)

where Z2 is the quark renormalisation constant, mbm the bare
current quark mass and the quark self-energy is given by

Σ(p2) = Z1

∫
d4q

(2π)4

×Dab
µν(q) ( i g tbγν ) S(p − q) Γ a

µ (−p, p − q, q), (5)

where Z1 is a combination of several renormalisation con-
stants, Dab

µν(q) is the gluon propagator that, in the Landau
gauge, is given by

Dab
µν(q) = −i δab

(
gµν − qµqν

q2

)
D(q2) ; (6)

below both Dab
µν(q) and D(q2) will be referred to as the gluon

propagator.
A key ingredient in gap Eq. (4) is the quark-gluon vertex.

Indeed, it is only after knowing Γ a
µ or, equivalently Γµ, that

Z(p2) and M(p2) can be computed. The Lorentz structure
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Fig. 2 The Dyson–Schwinger equation for the quark. The solid blobs
denote dressed propagators and vertices
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Fig. 1 The quark-gluon vertex
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enhancement occurs preferably at momenta of ∼ ΛQC D .
Furthermore, the vertex is enhanced when all momenta enter-
ing the vertex (see Fig. 1) tends to be parallel in pairs, solving
in this way the compromise that the momenta are restricted
to a region around ΛQC D . Within our solution for the quark-
gluon vertex, the dominant form factors are associated with
the tree level vertex γµ and the operator 2 pµ+qµ. The higher
rank tensor structures give sub-leading contributions to the
vertex.

In the current work, the vertex is written using the Ball-
Chiu construction. It is known that the Ball-Chiu vertex
has kinematical singularities for the Landau gauge [37] that
are associated to the transverse form factors (see definitions
below). These singularities can be avoided by considering
a different tensor basis for the full vertex as described, for
example, in [37]. However, the singularities are not associ-
ated to the longitudinal form factors and our calculation only
takes into account this class of form factors.

The paper is organised as follows. In Sect. 2 we intro-
duce the notation for the propagators, the Dyson–Schwinger
equations and the quark-gluon vertex. Moreover, we use a
Slavnov–Taylor identity to rewrite the vertex in terms of the
quark propagators functions and the quark-ghost kernel. The
parametrisation of the quark-ghost kernel is also discussed.
In Sect. 3 the scalar and vector components of the DSE in
Minkowski space are given, together with the corresponding
kernels. In Sect. 4 the DSE are rewritten in Euclidean space,
introduce the vertex ansatz and perform a scaling analysis of
the integral equations. In Sect. 5 we give the details of the
lattice data used in the current work for the various propa-
gators and on the functions that parametrise the lattice data.
The kernels for the Euclidean space DSE are discussed in
Sect. 6, together with the solutions for the vertex of the gap
equation. The quark-gluon vertex form factors are reported
in Sect. 7 for several kinematical configurations. Finally, on
Sect. 8 we summarise and conclude.

2 The quark gap equation and the quark-gluon vertex

In this section the notation used through out the article is
defined. In this first part of this work, the equations discussed
are written in Minkowski space with the diagonal metric g =
(1, −1, −1, −1). Let us follow the notation of [38] for the
quark-gluon vertex represented in Fig. 1 that considers all
momenta are incoming and, therefore, verify

p1 + p2 + p3 = 0. (1)

The one-particle irreducible Green’s function associated to
the vertex reads

Γ a
µ (p1, p2, p3) = g ta Γµ(p1, p2, p3), (2)

where g is the strong coupling constant and ta are the color
matrices in the fundamental representation.

The quark propagator is diagonal in color and its spin-
Lorentz structure is given by

S(p) = i
A(p2)/p − B(p2)

= i
A(p2)/p + B(p2)

A2(p2) p2 − B2(p2)

= i Z(p2)
/p + M(p2)

p2 − M2(p2)
, (3)

where Z(p2) = 1/A(p2) stands for the quark wave function
and M(p2) = B(p2)/A(p2) is the renormalisation group
invariant running quark mass.

The Dyson–Schwinger equation for the quark propagator,
also named the quark gap equation, is represented in Fig. 2
and can be written as

S−1(p) = −i Z2( /p − mbm) + Σ(p2), (4)

where Z2 is the quark renormalisation constant, mbm the bare
current quark mass and the quark self-energy is given by

Σ(p2) = Z1

∫
d4q

(2π)4

×Dab
µν(q) ( i g tbγν ) S(p − q) Γ a

µ (−p, p − q, q), (5)

where Z1 is a combination of several renormalisation con-
stants, Dab

µν(q) is the gluon propagator that, in the Landau
gauge, is given by

Dab
µν(q) = −i δab

(
gµν − qµqν

q2

)
D(q2) ; (6)

below both Dab
µν(q) and D(q2) will be referred to as the gluon

propagator.
A key ingredient in gap Eq. (4) is the quark-gluon vertex.

Indeed, it is only after knowing Γ a
µ or, equivalently Γµ, that

Z(p2) and M(p2) can be computed. The Lorentz structure
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Fig. 2 The Dyson–Schwinger equation for the quark. The solid blobs
denote dressed propagators and vertices
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one aims to look at the quark propagator, or the quark prop-
agator functions to extract information on the quark-gluon
vertex. In both these cases, a complete description of the
gluon and ghost propagators is assumed explicitly.

In the current work, we aim to solve the gap equation
for the quark-gluon vertex and, therefore, the knowledge of
the various propagators over all range of momenta appearing
in the integral equation is required. This is achieved fitting
the Landau gauge lattice propagators with model functions
that are compatible with the results of 1-loop renormalisation
group improved perturbation theory. In this way, it is ensured
that the perturbative tails are taken into account properly
in the parameterisation of the propagators. The parameter-
isations considered here are compared to those of [28] in
“Appendix B”. As can be seen on Fig. 44, the differences
between the two sets of curves are more quantitative than
qualitative.

5.1 Landau gauge lattice gluon and ghost propagators

The lattice gluon propagator has been computed in the Lan-
dau gauge both for full QCD and for the pure Yang–Mills.
The gluon propagator is well known for the pure Yang–
Mills theory and it was calculated in [47] for large statistical
ensembles and for large physical volumes ∼ (6.6 fm)4 and
∼ (8.2 fm)4; see also e.g. [44,45]. Furthermore, in [47] the
authors provide global fits to the lattice data that reproduce
the 1-loop renormalisation group summation of the lead-
ing logarithmic behaviour. Of the various expressions given
there, we will use to solve the integral Dyson–Schwinger
equations the following fit to the (6.6 fm)4 volume result

D(p2) = Z
p2 + M2

1

p4 + M2
2 p2+M4

3

[

ω ln

(
p2+m2

0

Λ2
QC D

)

+1

] γ

,

(63)

with the gluon anomalous dimension being γ = −13/22,
Z = 1.36486±0.00097, M2

1 = 2.510±0.030 GeV2, M2
2 =

0.471 ± 0.014 GeV2, M4
3 = 0.3621 ± 0.0038 GeV4, m2

0 =
0.216 ± 0.026 GeV2 using ΛQC D = 0.425 GeV and where
ω = 33 αs(µ)/12π with a strong coupling constant αs(µ =
3 GeV) = 0.3837; see [47] for details. This fit to the lattice
data has an associated χ2/d.o.f. = 3.15. The authors provide
fits with better values for the χ2/d.o.f. However, given that
the level of precision achieved on lattice simulations for the
quark propagator is considerably smaller than for the gluon
propagator, one should not distinguish between the various
fitting functions provided in [47]. Our option considers the
simplest functional form given in that work.

The lattice data for the Landau gauge gluon dressing func-
tion p2 D(p2), renormalised in the MOM-scheme at the mass
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Fig. 4 Pure Yang–Mills gluon (top) and ghost (bottom) lattice dressing
functions and the corresponding fit functions used herein. See text for
details

scale µ = 3 GeV and the fit associated to Eq. (63) can be
seen on the top part of Fig. 4.

For the ghost propagator we take the data reported in [46]
for the 804 lattice simulation and fit the lattice data to the
functional form

Dgh(p2) = F(p2)

p2

= Z

p2

p4 + M2
2 p2 + M4

1

p4 + M2
4 p2 + M4

3



ω ln




p2 + m4

1
p2+m2

0

Λ2
QC D



+ 1





γgh

,

(64)

getting Z = 1.0429 ± 0.0054, M4
1 = 18.2 ± 5.7 GeV4,

M2
2 = 33.4 ± 6.4 GeV2, M4

3 = 6.0 ± 2.7 GeV4, M2
4 =

29.5 ± 5.7 GeV2, m4
1 = 0.237 ± 0.049, m2

0 = 0.09 ±
0.42 GeV2 with a χ2/d.o.f. = 0.27. In the above expression
the ghost anomalous dimension reads γgh = −9/44 with
ω and ΛQC D taking the same values as in the gluon fitting
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one aims to look at the quark propagator, or the quark prop-
agator functions to extract information on the quark-gluon
vertex. In both these cases, a complete description of the
gluon and ghost propagators is assumed explicitly.

In the current work, we aim to solve the gap equation
for the quark-gluon vertex and, therefore, the knowledge of
the various propagators over all range of momenta appearing
in the integral equation is required. This is achieved fitting
the Landau gauge lattice propagators with model functions
that are compatible with the results of 1-loop renormalisation
group improved perturbation theory. In this way, it is ensured
that the perturbative tails are taken into account properly
in the parameterisation of the propagators. The parameter-
isations considered here are compared to those of [28] in
“Appendix B”. As can be seen on Fig. 44, the differences
between the two sets of curves are more quantitative than
qualitative.

5.1 Landau gauge lattice gluon and ghost propagators

The lattice gluon propagator has been computed in the Lan-
dau gauge both for full QCD and for the pure Yang–Mills.
The gluon propagator is well known for the pure Yang–
Mills theory and it was calculated in [47] for large statistical
ensembles and for large physical volumes ∼ (6.6 fm)4 and
∼ (8.2 fm)4; see also e.g. [44,45]. Furthermore, in [47] the
authors provide global fits to the lattice data that reproduce
the 1-loop renormalisation group summation of the lead-
ing logarithmic behaviour. Of the various expressions given
there, we will use to solve the integral Dyson–Schwinger
equations the following fit to the (6.6 fm)4 volume result

D(p2) = Z
p2 + M2

1

p4 + M2
2 p2+M4

3
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,

(63)

with the gluon anomalous dimension being γ = −13/22,
Z = 1.36486±0.00097, M2

1 = 2.510±0.030 GeV2, M2
2 =

0.471 ± 0.014 GeV2, M4
3 = 0.3621 ± 0.0038 GeV4, m2

0 =
0.216 ± 0.026 GeV2 using ΛQC D = 0.425 GeV and where
ω = 33 αs(µ)/12π with a strong coupling constant αs(µ =
3 GeV) = 0.3837; see [47] for details. This fit to the lattice
data has an associated χ2/d.o.f. = 3.15. The authors provide
fits with better values for the χ2/d.o.f. However, given that
the level of precision achieved on lattice simulations for the
quark propagator is considerably smaller than for the gluon
propagator, one should not distinguish between the various
fitting functions provided in [47]. Our option considers the
simplest functional form given in that work.

The lattice data for the Landau gauge gluon dressing func-
tion p2 D(p2), renormalised in the MOM-scheme at the mass
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Fig. 4 Pure Yang–Mills gluon (top) and ghost (bottom) lattice dressing
functions and the corresponding fit functions used herein. See text for
details

scale µ = 3 GeV and the fit associated to Eq. (63) can be
seen on the top part of Fig. 4.

For the ghost propagator we take the data reported in [46]
for the 804 lattice simulation and fit the lattice data to the
functional form

Dgh(p2) = F(p2)

p2

= Z
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,

(64)

getting Z = 1.0429 ± 0.0054, M4
1 = 18.2 ± 5.7 GeV4,

M2
2 = 33.4 ± 6.4 GeV2, M4

3 = 6.0 ± 2.7 GeV4, M2
4 =

29.5 ± 5.7 GeV2, m4
1 = 0.237 ± 0.049, m2

0 = 0.09 ±
0.42 GeV2 with a χ2/d.o.f. = 0.27. In the above expression
the ghost anomalous dimension reads γgh = −9/44 with
ω and ΛQC D taking the same values as in the gluon fitting
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one aims to look at the quark propagator, or the quark prop-
agator functions to extract information on the quark-gluon
vertex. In both these cases, a complete description of the
gluon and ghost propagators is assumed explicitly.

In the current work, we aim to solve the gap equation
for the quark-gluon vertex and, therefore, the knowledge of
the various propagators over all range of momenta appearing
in the integral equation is required. This is achieved fitting
the Landau gauge lattice propagators with model functions
that are compatible with the results of 1-loop renormalisation
group improved perturbation theory. In this way, it is ensured
that the perturbative tails are taken into account properly
in the parameterisation of the propagators. The parameter-
isations considered here are compared to those of [28] in
“Appendix B”. As can be seen on Fig. 44, the differences
between the two sets of curves are more quantitative than
qualitative.

5.1 Landau gauge lattice gluon and ghost propagators

The lattice gluon propagator has been computed in the Lan-
dau gauge both for full QCD and for the pure Yang–Mills.
The gluon propagator is well known for the pure Yang–
Mills theory and it was calculated in [47] for large statistical
ensembles and for large physical volumes ∼ (6.6 fm)4 and
∼ (8.2 fm)4; see also e.g. [44,45]. Furthermore, in [47] the
authors provide global fits to the lattice data that reproduce
the 1-loop renormalisation group summation of the lead-
ing logarithmic behaviour. Of the various expressions given
there, we will use to solve the integral Dyson–Schwinger
equations the following fit to the (6.6 fm)4 volume result
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with the gluon anomalous dimension being γ = −13/22,
Z = 1.36486±0.00097, M2

1 = 2.510±0.030 GeV2, M2
2 =

0.471 ± 0.014 GeV2, M4
3 = 0.3621 ± 0.0038 GeV4, m2

0 =
0.216 ± 0.026 GeV2 using ΛQC D = 0.425 GeV and where
ω = 33 αs(µ)/12π with a strong coupling constant αs(µ =
3 GeV) = 0.3837; see [47] for details. This fit to the lattice
data has an associated χ2/d.o.f. = 3.15. The authors provide
fits with better values for the χ2/d.o.f. However, given that
the level of precision achieved on lattice simulations for the
quark propagator is considerably smaller than for the gluon
propagator, one should not distinguish between the various
fitting functions provided in [47]. Our option considers the
simplest functional form given in that work.

The lattice data for the Landau gauge gluon dressing func-
tion p2 D(p2), renormalised in the MOM-scheme at the mass
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Fig. 4 Pure Yang–Mills gluon (top) and ghost (bottom) lattice dressing
functions and the corresponding fit functions used herein. See text for
details

scale µ = 3 GeV and the fit associated to Eq. (63) can be
seen on the top part of Fig. 4.

For the ghost propagator we take the data reported in [46]
for the 804 lattice simulation and fit the lattice data to the
functional form

Dgh(p2) = F(p2)
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getting Z = 1.0429 ± 0.0054, M4
1 = 18.2 ± 5.7 GeV4,

M2
2 = 33.4 ± 6.4 GeV2, M4

3 = 6.0 ± 2.7 GeV4, M2
4 =

29.5 ± 5.7 GeV2, m4
1 = 0.237 ± 0.049, m2

0 = 0.09 ±
0.42 GeV2 with a χ2/d.o.f. = 0.27. In the above expression
the ghost anomalous dimension reads γgh = −9/44 with
ω and ΛQC D taking the same values as in the gluon fitting
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function (63). The lattice data, renormalised in the MOM-
scheme at the mass scale µ = 3 GeV, and the fitting curve
(64) can be seen on the bottom of Fig. 4.

5.2 Lattice quark propagator

For the quark propagator we consider the result of a N f = 2
full QCD simulation in the Landau gauge [27,42] for β =
5.29, κ = 0.13632 and for a 323 × 64 lattice. For this par-
ticular lattice setup, the corresponding bare quark mass is 8
MeV and the pion mass reads Mπ = 295 MeV.

Our fittings to the lattice data, see below, take into account
that the lattice data is not free of lattice artefacts; see [27]
and [42] for details. At high momenta the lattice quark
wave function Z(p2) is a decreasing function of momenta, a
behaviour that is not compatible with perturbation theory that
predicts a constant Z(p2) in the Landau gauge. As reported
in [27,42], the analysis of the lattice artefacts relying on the
H4 method suggests that, indeed, Z(p2) is constant at high
p. In order to be compatible with perturbation theory, we
identify the region of momenta where Z(p2) is constant and,
for momenta above this plateaux, we replace the lattice esti-
mates of Z(p2) by constant values, i.e. the higher value of the
quark wave function belonging to the plateaux. The original
lattice data and the ultraviolet corrected lattice data can be
seen on top of Fig. 5. The UV corrected lattice data is then
fitted to the rational function

Z(p2) = Z0
p4 + M2

2 p2 + M4
1

p4 + M2
4 p2 + M4

3
(65)

giving Z0 = 1.11824 ± 0.00036, M4
1 = 1.41 ± 0.18 GeV4,

M2
2 = 6.28 ± 1.00 GeV2, M4

3 = 2.11 ± 0.28 GeV4, M2
4 =

6.20 ±0.98 GeV2 for a χ2/d.o.f. = 0.74. The solid red line
on Fig. 5 (top) refers to the fit just described.

The removal of the lattice artefacts for the running quark
mass is more delicate when compared to the evaluation of
the quark wave function lattice artefacts [24,42,43]. The lat-
tice data published in [27,42] and reported on Fig. 5 (bot-
tom) was obtained using the so called hybrid corrections to
reduce the lattice effects [24] . The hybrid method results in a
smoother mass function when compared to the one obtained
by applying the multiplicative corrections. The differences on
the corrected running mass between the two methods occur
for momenta above 1 GeV, with the multiplicative corrected
running mass being larger than the corresponding hybrid esti-
mation; see Appendix on [42]. The running mass provided
by the two methods, corrected for the lattice artefacts, seems
to converge to the same values at large momentum.

The running mass reported on Fig. 5 (bottom) is not
smooth enough to be fitted. To model the lattice running
mass in a way that reproduces the ultraviolet and the infrared
lattice data and is compatible with the perturbative behaviour
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Fig. 5 Quark wave function (top) and running mass (bottom) lattice
functions from full QCD simulations with N f = 2

at high moment, we remove some of the lattice data at inter-
mediate momenta. On Fig. 5 the data in the region with an
orange background was not taken into account in the global
fit of the running quark mass. The remaining lattice data was
fitted to

M(p2) = mq(p2)
[

A + log(p2 + λ m2
q(p2))

]γm
(66)

where γm = 12/29 is the quark anomalous dimension for
N f = 2 and

mq(p2) = Mq
p2 + m2

1

p4 + m2
2 p2 + m4

3
+ m0. (67)

The fitted parameters are Mq = 349±10 MeV GeV2, m2
1 =

1.09 ± 0.43 GeV2, m2
2 = 0.92 ± 0.28 GeV2, m4

3 = 0.42 ±
0.15 GeV4, m0 = 10.34±0.63 MeV and A = −2.98±0.25
for a χ2/d.o.f. = 1.97 after setting λ = 1 GeV2/MeV2. The
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function (63). The lattice data, renormalised in the MOM-
scheme at the mass scale µ = 3 GeV, and the fitting curve
(64) can be seen on the bottom of Fig. 4.

5.2 Lattice quark propagator

For the quark propagator we consider the result of a N f = 2
full QCD simulation in the Landau gauge [27,42] for β =
5.29, κ = 0.13632 and for a 323 × 64 lattice. For this par-
ticular lattice setup, the corresponding bare quark mass is 8
MeV and the pion mass reads Mπ = 295 MeV.

Our fittings to the lattice data, see below, take into account
that the lattice data is not free of lattice artefacts; see [27]
and [42] for details. At high momenta the lattice quark
wave function Z(p2) is a decreasing function of momenta, a
behaviour that is not compatible with perturbation theory that
predicts a constant Z(p2) in the Landau gauge. As reported
in [27,42], the analysis of the lattice artefacts relying on the
H4 method suggests that, indeed, Z(p2) is constant at high
p. In order to be compatible with perturbation theory, we
identify the region of momenta where Z(p2) is constant and,
for momenta above this plateaux, we replace the lattice esti-
mates of Z(p2) by constant values, i.e. the higher value of the
quark wave function belonging to the plateaux. The original
lattice data and the ultraviolet corrected lattice data can be
seen on top of Fig. 5. The UV corrected lattice data is then
fitted to the rational function

Z(p2) = Z0
p4 + M2

2 p2 + M4
1

p4 + M2
4 p2 + M4

3
(65)

giving Z0 = 1.11824 ± 0.00036, M4
1 = 1.41 ± 0.18 GeV4,

M2
2 = 6.28 ± 1.00 GeV2, M4

3 = 2.11 ± 0.28 GeV4, M2
4 =

6.20 ±0.98 GeV2 for a χ2/d.o.f. = 0.74. The solid red line
on Fig. 5 (top) refers to the fit just described.

The removal of the lattice artefacts for the running quark
mass is more delicate when compared to the evaluation of
the quark wave function lattice artefacts [24,42,43]. The lat-
tice data published in [27,42] and reported on Fig. 5 (bot-
tom) was obtained using the so called hybrid corrections to
reduce the lattice effects [24] . The hybrid method results in a
smoother mass function when compared to the one obtained
by applying the multiplicative corrections. The differences on
the corrected running mass between the two methods occur
for momenta above 1 GeV, with the multiplicative corrected
running mass being larger than the corresponding hybrid esti-
mation; see Appendix on [42]. The running mass provided
by the two methods, corrected for the lattice artefacts, seems
to converge to the same values at large momentum.

The running mass reported on Fig. 5 (bottom) is not
smooth enough to be fitted. To model the lattice running
mass in a way that reproduces the ultraviolet and the infrared
lattice data and is compatible with the perturbative behaviour

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9
p [GeV]

0.7

0.8

0.9

1.0

1.1

Z(
p²

)

Lat
UV corrected
Fit Rational Function

β = 5.29 κ = 0.13632     323x 64     Mπ = 295 MeV

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9
p  [GeV]

0

50

100

150

200

250

300

350

M
(p
²) 

 [M
eV

]

β = 5.29 κ = 0.13632         323x 64         Mπ = 295 MeV

Fig. 5 Quark wave function (top) and running mass (bottom) lattice
functions from full QCD simulations with N f = 2

at high moment, we remove some of the lattice data at inter-
mediate momenta. On Fig. 5 the data in the region with an
orange background was not taken into account in the global
fit of the running quark mass. The remaining lattice data was
fitted to

M(p2) = mq(p2)
[

A + log(p2 + λ m2
q(p2))

]γm
(66)

where γm = 12/29 is the quark anomalous dimension for
N f = 2 and

mq(p2) = Mq
p2 + m2

1

p4 + m2
2 p2 + m4

3
+ m0. (67)

The fitted parameters are Mq = 349±10 MeV GeV2, m2
1 =

1.09 ± 0.43 GeV2, m2
2 = 0.92 ± 0.28 GeV2, m4

3 = 0.42 ±
0.15 GeV4, m0 = 10.34±0.63 MeV and A = −2.98±0.25
for a χ2/d.o.f. = 1.97 after setting λ = 1 GeV2/MeV2. The
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Fig. 1 The quark-gluon vertex
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enhancement occurs preferably at momenta of ∼ ΛQC D .
Furthermore, the vertex is enhanced when all momenta enter-
ing the vertex (see Fig. 1) tends to be parallel in pairs, solving
in this way the compromise that the momenta are restricted
to a region around ΛQC D . Within our solution for the quark-
gluon vertex, the dominant form factors are associated with
the tree level vertex γµ and the operator 2 pµ+qµ. The higher
rank tensor structures give sub-leading contributions to the
vertex.

In the current work, the vertex is written using the Ball-
Chiu construction. It is known that the Ball-Chiu vertex
has kinematical singularities for the Landau gauge [37] that
are associated to the transverse form factors (see definitions
below). These singularities can be avoided by considering
a different tensor basis for the full vertex as described, for
example, in [37]. However, the singularities are not associ-
ated to the longitudinal form factors and our calculation only
takes into account this class of form factors.

The paper is organised as follows. In Sect. 2 we intro-
duce the notation for the propagators, the Dyson–Schwinger
equations and the quark-gluon vertex. Moreover, we use a
Slavnov–Taylor identity to rewrite the vertex in terms of the
quark propagators functions and the quark-ghost kernel. The
parametrisation of the quark-ghost kernel is also discussed.
In Sect. 3 the scalar and vector components of the DSE in
Minkowski space are given, together with the corresponding
kernels. In Sect. 4 the DSE are rewritten in Euclidean space,
introduce the vertex ansatz and perform a scaling analysis of
the integral equations. In Sect. 5 we give the details of the
lattice data used in the current work for the various propa-
gators and on the functions that parametrise the lattice data.
The kernels for the Euclidean space DSE are discussed in
Sect. 6, together with the solutions for the vertex of the gap
equation. The quark-gluon vertex form factors are reported
in Sect. 7 for several kinematical configurations. Finally, on
Sect. 8 we summarise and conclude.

2 The quark gap equation and the quark-gluon vertex

In this section the notation used through out the article is
defined. In this first part of this work, the equations discussed
are written in Minkowski space with the diagonal metric g =
(1, −1, −1, −1). Let us follow the notation of [38] for the
quark-gluon vertex represented in Fig. 1 that considers all
momenta are incoming and, therefore, verify

p1 + p2 + p3 = 0. (1)

The one-particle irreducible Green’s function associated to
the vertex reads

Γ a
µ (p1, p2, p3) = g ta Γµ(p1, p2, p3), (2)

where g is the strong coupling constant and ta are the color
matrices in the fundamental representation.

The quark propagator is diagonal in color and its spin-
Lorentz structure is given by

S(p) = i
A(p2)/p − B(p2)

= i
A(p2)/p + B(p2)

A2(p2) p2 − B2(p2)

= i Z(p2)
/p + M(p2)

p2 − M2(p2)
, (3)

where Z(p2) = 1/A(p2) stands for the quark wave function
and M(p2) = B(p2)/A(p2) is the renormalisation group
invariant running quark mass.

The Dyson–Schwinger equation for the quark propagator,
also named the quark gap equation, is represented in Fig. 2
and can be written as

S−1(p) = −i Z2( /p − mbm) + Σ(p2), (4)

where Z2 is the quark renormalisation constant, mbm the bare
current quark mass and the quark self-energy is given by

Σ(p2) = Z1

∫
d4q

(2π)4

×Dab
µν(q) ( i g tbγν ) S(p − q) Γ a

µ (−p, p − q, q), (5)

where Z1 is a combination of several renormalisation con-
stants, Dab

µν(q) is the gluon propagator that, in the Landau
gauge, is given by

Dab
µν(q) = −i δab

(
gµν − qµqν

q2

)
D(q2) ; (6)

below both Dab
µν(q) and D(q2) will be referred to as the gluon

propagator.
A key ingredient in gap Eq. (4) is the quark-gluon vertex.

Indeed, it is only after knowing Γ a
µ or, equivalently Γµ, that

Z(p2) and M(p2) can be computed. The Lorentz structure

[
p

]−1 =
p

[ ]−1 +
p

q = p − k

k

Fig. 2 The Dyson–Schwinger equation for the quark. The solid blobs
denote dressed propagators and vertices
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enhancement occurs preferably at momenta of ∼ ΛQC D .
Furthermore, the vertex is enhanced when all momenta enter-
ing the vertex (see Fig. 1) tends to be parallel in pairs, solving
in this way the compromise that the momenta are restricted
to a region around ΛQC D . Within our solution for the quark-
gluon vertex, the dominant form factors are associated with
the tree level vertex γµ and the operator 2 pµ+qµ. The higher
rank tensor structures give sub-leading contributions to the
vertex.

In the current work, the vertex is written using the Ball-
Chiu construction. It is known that the Ball-Chiu vertex
has kinematical singularities for the Landau gauge [37] that
are associated to the transverse form factors (see definitions
below). These singularities can be avoided by considering
a different tensor basis for the full vertex as described, for
example, in [37]. However, the singularities are not associ-
ated to the longitudinal form factors and our calculation only
takes into account this class of form factors.

The paper is organised as follows. In Sect. 2 we intro-
duce the notation for the propagators, the Dyson–Schwinger
equations and the quark-gluon vertex. Moreover, we use a
Slavnov–Taylor identity to rewrite the vertex in terms of the
quark propagators functions and the quark-ghost kernel. The
parametrisation of the quark-ghost kernel is also discussed.
In Sect. 3 the scalar and vector components of the DSE in
Minkowski space are given, together with the corresponding
kernels. In Sect. 4 the DSE are rewritten in Euclidean space,
introduce the vertex ansatz and perform a scaling analysis of
the integral equations. In Sect. 5 we give the details of the
lattice data used in the current work for the various propa-
gators and on the functions that parametrise the lattice data.
The kernels for the Euclidean space DSE are discussed in
Sect. 6, together with the solutions for the vertex of the gap
equation. The quark-gluon vertex form factors are reported
in Sect. 7 for several kinematical configurations. Finally, on
Sect. 8 we summarise and conclude.

2 The quark gap equation and the quark-gluon vertex

In this section the notation used through out the article is
defined. In this first part of this work, the equations discussed
are written in Minkowski space with the diagonal metric g =
(1, −1, −1, −1). Let us follow the notation of [38] for the
quark-gluon vertex represented in Fig. 1 that considers all
momenta are incoming and, therefore, verify

p1 + p2 + p3 = 0. (1)

The one-particle irreducible Green’s function associated to
the vertex reads

Γ a
µ (p1, p2, p3) = g ta Γµ(p1, p2, p3), (2)

where g is the strong coupling constant and ta are the color
matrices in the fundamental representation.

The quark propagator is diagonal in color and its spin-
Lorentz structure is given by

S(p) = i
A(p2)/p − B(p2)

= i
A(p2)/p + B(p2)

A2(p2) p2 − B2(p2)

= i Z(p2)
/p + M(p2)

p2 − M2(p2)
, (3)

where Z(p2) = 1/A(p2) stands for the quark wave function
and M(p2) = B(p2)/A(p2) is the renormalisation group
invariant running quark mass.

The Dyson–Schwinger equation for the quark propagator,
also named the quark gap equation, is represented in Fig. 2
and can be written as

S−1(p) = −i Z2( /p − mbm) + Σ(p2), (4)

where Z2 is the quark renormalisation constant, mbm the bare
current quark mass and the quark self-energy is given by

Σ(p2) = Z1

∫
d4q

(2π)4

×Dab
µν(q) ( i g tbγν ) S(p − q) Γ a

µ (−p, p − q, q), (5)

where Z1 is a combination of several renormalisation con-
stants, Dab

µν(q) is the gluon propagator that, in the Landau
gauge, is given by

Dab
µν(q) = −i δab

(
gµν − qµqν

q2

)
D(q2) ; (6)

below both Dab
µν(q) and D(q2) will be referred to as the gluon

propagator.
A key ingredient in gap Eq. (4) is the quark-gluon vertex.

Indeed, it is only after knowing Γ a
µ or, equivalently Γµ, that

Z(p2) and M(p2) can be computed. The Lorentz structure
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Fig. 2 The Dyson–Schwinger equation for the quark. The solid blobs
denote dressed propagators and vertices
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of the quark-gluon vertex Γµ can be decomposed into longi-
tudinal Γ (L) and transverse Γ (T ) components relative to the
gluon momenta, i.e. one writes

Γµ(p1, p2, p3) = Γ (L)
µ (p1, p2, p3) + Γ (T )

µ (p1, p2, p3),

(7)

where, by definition,

pµ
3 Γ (T )

µ (p1, p2, p3) = 0. (8)

By choosing a suitable tensor basis in the spinor-Lorentz
space, Γµ can be written as a sum of scalar form factors that
multiply each of the elements of the basis. The full vertex
Γµ requires twelve form factors and for the Ball and Chiu
basis [6] it reads

Γ L
µ (p1, p2, p3) = −i

4∑

i=1

λi (p1, p2, p3) L(i)
µ (p1, p2) (9)

Γ T
µ (p1, p2, p3) = −i

8∑

i=1

τi (p1, p2, p3) T (i)
µ (p1, p2).

(10)

The operators associated to the longitudinal vertex are

L(1)
µ (p1, p2) = γµ,

L(2)
µ (p1, p2) = (/p1 − /p2) (p1 − p2)µ ,

L(3)
µ (p1, p2) = (p1 − p2)µ ID ,

L(4)
µ (p1, p2) = σµν (p1 − p2)

ν , (11)

while those associated to the transverse part of the vertex
read

T (1)
µ (p1, p2) =

[
p1µ (p2 · p3) − p2µ (p1 · p3)

]
ID,

T (2)
µ (p1, p2) = −T (1)

µ (p1, p2) (/p1 − /p2) ,

T (3)
µ (p1, p2) = p2

3, γµ − p3µ /p3,

T (4)
µ (p1, p2) = T (1)

µ (p1, p2) σαβ pα
1 pβ

2 ,

T (5)
µ (p1, p2) = σµν pν

3 ,

T (6)
µ (p1, p2) = γµ

(
p2

1 − p2
2

)
+ (p1 − p2)µ /p3,

T (7)
µ (p1, p2) = −1

2

(
p2

1 − p2
2

)

×
[
γµ (/p1 − /p2) − (p1 − p2)µ ID

]

− (p1 − p2)µ σαβ pα
1 pβ

2 ,

T (8)
µ (p1, p2) = −γµ σαβ pα

1 pβ
2 + (p1µ /p2 − p2µ /p1),

(12)

where σµν = 1
2 [γµ, γν].

2.1 QCD symmetries and the quark-gluon vertex

The global and local symmetries of QCD constrain the full
vertex Γµ and connect several of the Green’s functions the-
ory. For example, the global symmetries of QCD require
that the form factors λi and τi to be either symmetric or
anti-symmetric under exchange of the two first momenta;
see, e.g., ref. [38] and references therein. On the other hand,
gauge symmetry implies that the Green functions also satisfy
the Slavnov–Taylor identities (STI) [39–41]. These identi-
ties play a major role in our understanding of QCD and, in
particular, the longitudinal part of the quark-gluon vertex is
constrained by the following identity

pµ
3 Γµ(p1, p2, p3) = F(p2

3)
[

S−1(−p1) H(p1, p2, p3)

− H(p2, p1, p3) S−1(p2)
]
, (13)

where the ghost-dressing function F(q2) is related to the
ghost two-point correlation function as

Dab(q2) = − δab Dgh(q2) = − δab F(q2)

q2 (14)

and H and H are associated to the quark-ghost kernel. As dis-
cussed in [38], these functions can be parametrised in terms
of four form factors as

H(p1, p2, p3) = X0 ID + X1 /p1 + X2 /p2 + X3 σαβ pα
1 pβ

2 ,

H(p2, p1, p3) = X0 ID − X2 /p1 − X1 /p2 + X3 σαβ pα
1 pβ

2 ,

(15)

where Xi ≡ Xi (p1, p2, p3) and Xi ≡ Xi (p2, p1, p3).
The STI given in Eq. (13) can be solved with respect to

the vertex [13] to write the longitudinal form factors λi in
terms of the quark propagator functions A(p2), B(p2) and
the quark-ghost kernel functions Xi and Xi as

λ1(p1, p2, p3) = F(p2
3)

2

×
{

A(p2
1)

[
X0 +

(
p2

1 − p1 · p2

)
X3

]

+ A(p2
2)

[
X0 +

(
p2

2 − p1 · p2

)
X3

]

+ B(p2
1) [X1 + X2]

+ B(p2
2)

[
X1 + X2

] }
, (16)

λ2(p1, p2, p3) = F(p2
3)

2
(

p2
2 − p2

1

)

×
{

A(p2
1)

[(
p2

1 + p1 · p2

)
X3 − X0

]

+ A(p2
2)

[
X0 −

(
p2

2 + p1 · p2

)
X3

]

123

Spontaneous Chiral symmetry breaking & pion as a Goldstone boson 
(origin of the nucleon mass – “constituent quarks”, Roberts, Maris, Tandy, Cloet, Maris...) 

Longitudinal component

Rojas, de Melo, El-Bennich,  Oliveira, Frederico, JHEP 1310 (2013) 193; Oliveira,  
Paula,  Frederico, de Melo EPJC 78(7), 553 (2018) & EPJC 79 (2019) 116 & 
Oliveira, Frederico, de Paula, EPJC 80 (2020) 484 

7



6 Orlando Oliveira, Tobias Frederico, Wayne de Paula: The soft-gluon limit and the IR enhancement of the QGV

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
p [GeV]

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

X
0(p
²)

Pert. Theo. with H(q²)
Pert. Theo. with H(q²) = 1
EPJC Sol. I
EPJC Sol. II
New Sol.

0.1 1 10 100
p² [GeV²]

0.90
0.95
1.00
1.05
1.10
1.15
1.20
1.25
1.30

X
0(p
²)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
p [GeV]

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Y
1(p
²)

EPJC Sol. I
EPJC Sol. II
New Sol. II

0 0.5 1 1.5 2 2.5 3 3.5 4
p [GeV]

0.0
0.2
0.4
0.6
0.8

Y
1(p
²)

EPJC Sol. I
EPJC Sol. II
New Sol. II

0 1 2 3 4 5 6 7 8 9 10
p [GeV]

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

Y
3(p
²)

EPJC Sol. I
EPJC Sol. II
New Sol.

Fig. 3. The solutions I and II found for X0(q
2), Y1(q

2) and
Y3(q

2) in [3] and the new solution found with the Padé pa-
rameterisation. See text for details. Also shown are the 1-loop
dressed perturbation theory for X0(q

2) (dashed lines) using
both the tree level gluon-ghost vertex (H(q2) = 1) and an
improved vertex ghost-gluon vertex [24].

for q . 200 MeV, being larger to accommodate the lattice
soft-gluon limit. For q & 1 GeV, the various curves have
similar structures, i.e. the same number of maxima and
minima, but di↵er in UV. Here the Padé based solution
approaches a negative constant value, while the Tikhonov
solutions approach a positive constant value.

The Padé based solution for Y3(q2) is di↵erent from
those computed in [3]. It has a simplified structure that
interpolates between its zero momentum value dictated by

the lattice soft-gluon limit and a UV constant value that
is about the same found for Sol. I in [3].

In [11] the authors solved simultaneously the SDE for
the quark propagator together with the quark-ghost ker-
nel, in its one-loop dressed perturbation theory, to com-
pute the various form factors Xi. At the qualitative level,
but not quantitatively, our results point in the same di-
rection. See [3] also for notation issues.
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Fig. 4. Form factors for Sol. I reported in [3] (left) together
with those associated with the new solution based on Padé
approximantions (right).

In Fig. 4 we report the various �i’s, the relevant quark-
gluon vertex form factors, for the new Padé solution and
compare them to the corresponding ones for Sol. I com-
puted in [3]. Somehow surprisingly the di↵erences between
the two sets of form factors are minimal, with the excep-
tion of �2. These situations also occurs for other values of
✓ 6= 0 (not represented here), the angle between the quark
and the gluon momentum. This is a welcome feature, as
the two solutions were computed in completely di↵erent
and independent ways, giving confidence in our findings.
In general the �i based on the Padé solution for X0 and Yi

have slightly less structure as the oscillations observed in
the Tikhonov regularised calculation are not present. �1

for the two solutions is very similar with the Padé based
calculation showing a clear enhancement in the infrared
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Fig. 3. The solutions I and II found for X0(q
2), Y1(q

2) and
Y3(q

2) in [3] and the new solution found with the Padé pa-
rameterisation. See text for details. Also shown are the 1-loop
dressed perturbation theory for X0(q

2) (dashed lines) using
both the tree level gluon-ghost vertex (H(q2) = 1) and an
improved vertex ghost-gluon vertex [24].

for q . 200 MeV, being larger to accommodate the lattice
soft-gluon limit. For q & 1 GeV, the various curves have
similar structures, i.e. the same number of maxima and
minima, but di↵er in UV. Here the Padé based solution
approaches a negative constant value, while the Tikhonov
solutions approach a positive constant value.

The Padé based solution for Y3(q2) is di↵erent from
those computed in [3]. It has a simplified structure that
interpolates between its zero momentum value dictated by

the lattice soft-gluon limit and a UV constant value that
is about the same found for Sol. I in [3].

In [11] the authors solved simultaneously the SDE for
the quark propagator together with the quark-ghost ker-
nel, in its one-loop dressed perturbation theory, to com-
pute the various form factors Xi. At the qualitative level,
but not quantitatively, our results point in the same di-
rection. See [3] also for notation issues.
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Fig. 4. Form factors for Sol. I reported in [3] (left) together
with those associated with the new solution based on Padé
approximantions (right).

In Fig. 4 we report the various �i’s, the relevant quark-
gluon vertex form factors, for the new Padé solution and
compare them to the corresponding ones for Sol. I com-
puted in [3]. Somehow surprisingly the di↵erences between
the two sets of form factors are minimal, with the excep-
tion of �2. These situations also occurs for other values of
✓ 6= 0 (not represented here), the angle between the quark
and the gluon momentum. This is a welcome feature, as
the two solutions were computed in completely di↵erent
and independent ways, giving confidence in our findings.
In general the �i based on the Padé solution for X0 and Yi

have slightly less structure as the oscillations observed in
the Tikhonov regularised calculation are not present. �1

for the two solutions is very similar with the Padé based
calculation showing a clear enhancement in the infrared
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2), Y1(q

2) and
Y3(q

2) in [3] and the new solution found with the Padé pa-
rameterisation. See text for details. Also shown are the 1-loop
dressed perturbation theory for X0(q

2) (dashed lines) using
both the tree level gluon-ghost vertex (H(q2) = 1) and an
improved vertex ghost-gluon vertex [24].

for q . 200 MeV, being larger to accommodate the lattice
soft-gluon limit. For q & 1 GeV, the various curves have
similar structures, i.e. the same number of maxima and
minima, but di↵er in UV. Here the Padé based solution
approaches a negative constant value, while the Tikhonov
solutions approach a positive constant value.

The Padé based solution for Y3(q2) is di↵erent from
those computed in [3]. It has a simplified structure that
interpolates between its zero momentum value dictated by

the lattice soft-gluon limit and a UV constant value that
is about the same found for Sol. I in [3].

In [11] the authors solved simultaneously the SDE for
the quark propagator together with the quark-ghost ker-
nel, in its one-loop dressed perturbation theory, to com-
pute the various form factors Xi. At the qualitative level,
but not quantitatively, our results point in the same di-
rection. See [3] also for notation issues.
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Fig. 4. Form factors for Sol. I reported in [3] (left) together
with those associated with the new solution based on Padé
approximantions (right).

In Fig. 4 we report the various �i’s, the relevant quark-
gluon vertex form factors, for the new Padé solution and
compare them to the corresponding ones for Sol. I com-
puted in [3]. Somehow surprisingly the di↵erences between
the two sets of form factors are minimal, with the excep-
tion of �2. These situations also occurs for other values of
✓ 6= 0 (not represented here), the angle between the quark
and the gluon momentum. This is a welcome feature, as
the two solutions were computed in completely di↵erent
and independent ways, giving confidence in our findings.
In general the �i based on the Padé solution for X0 and Yi

have slightly less structure as the oscillations observed in
the Tikhonov regularised calculation are not present. �1

for the two solutions is very similar with the Padé based
calculation showing a clear enhancement in the infrared
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Fig. 3. The solutions I and II found for X0(q
2), Y1(q

2) and
Y3(q

2) in [3] and the new solution found with the Padé pa-
rameterisation. See text for details. Also shown are the 1-loop
dressed perturbation theory for X0(q

2) (dashed lines) using
both the tree level gluon-ghost vertex (H(q2) = 1) and an
improved vertex ghost-gluon vertex [24].

for q . 200 MeV, being larger to accommodate the lattice
soft-gluon limit. For q & 1 GeV, the various curves have
similar structures, i.e. the same number of maxima and
minima, but di↵er in UV. Here the Padé based solution
approaches a negative constant value, while the Tikhonov
solutions approach a positive constant value.

The Padé based solution for Y3(q2) is di↵erent from
those computed in [3]. It has a simplified structure that
interpolates between its zero momentum value dictated by

the lattice soft-gluon limit and a UV constant value that
is about the same found for Sol. I in [3].

In [11] the authors solved simultaneously the SDE for
the quark propagator together with the quark-ghost ker-
nel, in its one-loop dressed perturbation theory, to com-
pute the various form factors Xi. At the qualitative level,
but not quantitatively, our results point in the same di-
rection. See [3] also for notation issues.
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Fig. 4. Form factors for Sol. I reported in [3] (left) together
with those associated with the new solution based on Padé
approximantions (right).

In Fig. 4 we report the various �i’s, the relevant quark-
gluon vertex form factors, for the new Padé solution and
compare them to the corresponding ones for Sol. I com-
puted in [3]. Somehow surprisingly the di↵erences between
the two sets of form factors are minimal, with the excep-
tion of �2. These situations also occurs for other values of
✓ 6= 0 (not represented here), the angle between the quark
and the gluon momentum. This is a welcome feature, as
the two solutions were computed in completely di↵erent
and independent ways, giving confidence in our findings.
In general the �i based on the Padé solution for X0 and Yi

have slightly less structure as the oscillations observed in
the Tikhonov regularised calculation are not present. �1

for the two solutions is very similar with the Padé based
calculation showing a clear enhancement in the infrared

Ø Schwinger-Dyson eq. quark self-energy 
Ø Longitudinal components quark-gluon vertex
Ø Slanov-Taylor identity & Quark-Ghost Kernel
Ø Padé approximants
Ø Error minimization ~ 2-4%
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reader that in [3] we used µ = 4.3 GeV as renormalisation
scale and it will also be used here to solve the SDE. All
these constraints can be taken in the calculation if all the
functions are parametrised by Padé approximants

X0(q
2) =

1 + a02 q
2 + a04 q

4

1 + b02 q
2 + a04q

4
,

Y1(q
2) =

Y1(0) + a12 q
2 + a14 q

4 + a16 q
6 + a18 q

8

1 + b12 q
2 + b14 q

4 + b16 q
6 + b18 q

8
,

Y3(q
2) =

Y3(0) + a32 q
2 + a34 q

4 + a36 q
6 + a38 q

8

1 + b32 q
2 + b34 q

4 + b36 q
6 + b38 q

8
.(23)

The coe�cients in (23) were computed relying on simu-
lating annealing to minimize the sum of the relative error
of the scalar and vector equations. The numerical experi-
ments show that it is relative easy to produce “solutions”
whose maximum relative error for the SDE is of the order
of 15%. However, for errors below the 10% value we found
a single solution. As seen in Fig. 2 we found a solution
that solves the SDE equations with a relative error, on
each equation, below the 4% level. In the minimisation
and to avoid poles on the Euclidean momenta real axis it
was assumed that all the coe�cients in the denominator
are positive real numbers.

Our parametrisation for X0(q2) is the simplest Padé
approximant that is compatible with the normalisation
conditions X0(0) = X0(+1) = 1 and allows for small de-
viations from unity as found in previous investigations [3,
10,11]. Furthermore, taking as guide these previous calcu-
lations we expected a maximum of X0(q2) below 1 GeV.
Given that for small q2, the function X0(q2) is expected
to grow, then b02 < a02. If X0(q2) has a maximum above
1 for q < 1 GeV, this demands a02 < 1 GeV�2. All these
constraints for X0 were taking into account in the min-
imisation process.

In the minimisation of the error we also changed the
powers of the numerator and denominator in the Padé
approximants for Y1(q2) and Y3(q2) but only with those
reported above we were able to find a solution of the SDE
with a relative error below 4%. During the minimization
process we observed that the first function to stabilize was
Y1(q2), followed by Y0(q2) and then by Y3(q2).

In Fig. 2 we show the relative error for the solution
of the Schwinger-Dyson equations based on Padé approx-
imants and the solutions reported in [3] computed with
↵s = 0.22. In all cases the relative error is below 4%.

6 Results and Summary

In Tab. 1 the coe�cients for the solution that minimise the
relative error of the SDE are reported. The corresponding
form factors X0(q2), Y1(q2) and Y3(q2) are shown in Fig.
3 and compared to the solutions computed in [3] with
a completely di↵erent method, where the original SDE
were replaced by Tikhonov regularised equations. All the
represented solutions were computed using the same set
of parameters, namely an UV hard cuto↵ of ⇤ = 20 GeV,
↵s = 0.22 and all propagators renormalised at µ = 4.3
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Fig. 2. Relative error for the Schwinger-Dyson equations for
the solutions I and II reported in [3] for ↵s = 0.22 and the new
solution considered here, computed using Padé approximants
and taking into account the soft-gluon limit. In both solutions
the propagators were renormalised at µ = 4.3 GeV using the
MOM-scheme.

X0(q
2) 1.00000 8.3596 20.3060

1.00000 4.0300 20.3060

Y1(q
2) 0.14961 9.4365 -23.3389 10.3509 -0.1385

1.00000 0.00016 21.7101 15.7290 3.2992

Y3(q
2) -0.06986 -1.1716 3.8827 -5.7153 3.6862

1.00000 17.5000 6.7462 19.7574 16.9110

Table 1. Coe�cients of the Padé approximant in (23) in pow-
ers of GeV. For each function, the upper line refers to the
numerator coe�cients in increasing power of q2, while in the
lower line are the coe�cients for the denominator polynomial
in increasing powers of q2.

GeV. Moreover, for the various integrations, angular and
momentum, we used exactly the same number of Gauss-
Legendre points as in [3].

For X0(q2) the new solution is enhanced compared to
those computed in [3], it has a maximum of ⇠ 1.35 to be
compared with ⇠ 1.10 for the old solutions. The maximum
of the new solution occurs at slightly larger q ⇠ 450 MeV
for the Padé based solution and ⇠ 350 MeV for Tikhonov
regularised solution. The outcome of the one-loop dressed
perturbation theory reported also in Fig. 3 have maxima
that are similar to those of the Tikhonov regularised so-
lution but occurring at a much larger scale, i.e. for q ⇠ 1
GeV. The Padé based solution does not show any minima
with X0(q2) < 1, as seen on the Tikhonov solutions, and
approaches the UV normalisation condition X0(+1) = 1
in a smoother way than the Tikhonov ones. In this respect
the new solution follows closer the behaviour observed for
the predictions of one-loop dressed perturbation theory.

The Y1(q2) seen in Fig. 3 are quite similar up to ⇠ 1
GeV. The maximum of the Padé solution being slightly
smaller than those of [3] and its deep infrared values, i.e.
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reader that in [3] we used µ = 4.3 GeV as renormalisation
scale and it will also be used here to solve the SDE. All
these constraints can be taken in the calculation if all the
functions are parametrised by Padé approximants

X0(q
2) =
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The coe�cients in (23) were computed relying on simu-
lating annealing to minimize the sum of the relative error
of the scalar and vector equations. The numerical experi-
ments show that it is relative easy to produce “solutions”
whose maximum relative error for the SDE is of the order
of 15%. However, for errors below the 10% value we found
a single solution. As seen in Fig. 2 we found a solution
that solves the SDE equations with a relative error, on
each equation, below the 4% level. In the minimisation
and to avoid poles on the Euclidean momenta real axis it
was assumed that all the coe�cients in the denominator
are positive real numbers.

Our parametrisation for X0(q2) is the simplest Padé
approximant that is compatible with the normalisation
conditions X0(0) = X0(+1) = 1 and allows for small de-
viations from unity as found in previous investigations [3,
10,11]. Furthermore, taking as guide these previous calcu-
lations we expected a maximum of X0(q2) below 1 GeV.
Given that for small q2, the function X0(q2) is expected
to grow, then b02 < a02. If X0(q2) has a maximum above
1 for q < 1 GeV, this demands a02 < 1 GeV�2. All these
constraints for X0 were taking into account in the min-
imisation process.

In the minimisation of the error we also changed the
powers of the numerator and denominator in the Padé
approximants for Y1(q2) and Y3(q2) but only with those
reported above we were able to find a solution of the SDE
with a relative error below 4%. During the minimization
process we observed that the first function to stabilize was
Y1(q2), followed by Y0(q2) and then by Y3(q2).

In Fig. 2 we show the relative error for the solution
of the Schwinger-Dyson equations based on Padé approx-
imants and the solutions reported in [3] computed with
↵s = 0.22. In all cases the relative error is below 4%.

6 Results and Summary

In Tab. 1 the coe�cients for the solution that minimise the
relative error of the SDE are reported. The corresponding
form factors X0(q2), Y1(q2) and Y3(q2) are shown in Fig.
3 and compared to the solutions computed in [3] with
a completely di↵erent method, where the original SDE
were replaced by Tikhonov regularised equations. All the
represented solutions were computed using the same set
of parameters, namely an UV hard cuto↵ of ⇤ = 20 GeV,
↵s = 0.22 and all propagators renormalised at µ = 4.3
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Fig. 2. Relative error for the Schwinger-Dyson equations for
the solutions I and II reported in [3] for ↵s = 0.22 and the new
solution considered here, computed using Padé approximants
and taking into account the soft-gluon limit. In both solutions
the propagators were renormalised at µ = 4.3 GeV using the
MOM-scheme.

X0(q
2) 1.00000 8.3596 20.3060

1.00000 4.0300 20.3060

Y1(q
2) 0.14961 9.4365 -23.3389 10.3509 -0.1385

1.00000 0.00016 21.7101 15.7290 3.2992

Y3(q
2) -0.06986 -1.1716 3.8827 -5.7153 3.6862

1.00000 17.5000 6.7462 19.7574 16.9110

Table 1. Coe�cients of the Padé approximant in (23) in pow-
ers of GeV. For each function, the upper line refers to the
numerator coe�cients in increasing power of q2, while in the
lower line are the coe�cients for the denominator polynomial
in increasing powers of q2.

GeV. Moreover, for the various integrations, angular and
momentum, we used exactly the same number of Gauss-
Legendre points as in [3].

For X0(q2) the new solution is enhanced compared to
those computed in [3], it has a maximum of ⇠ 1.35 to be
compared with ⇠ 1.10 for the old solutions. The maximum
of the new solution occurs at slightly larger q ⇠ 450 MeV
for the Padé based solution and ⇠ 350 MeV for Tikhonov
regularised solution. The outcome of the one-loop dressed
perturbation theory reported also in Fig. 3 have maxima
that are similar to those of the Tikhonov regularised so-
lution but occurring at a much larger scale, i.e. for q ⇠ 1
GeV. The Padé based solution does not show any minima
with X0(q2) < 1, as seen on the Tikhonov solutions, and
approaches the UV normalisation condition X0(+1) = 1
in a smoother way than the Tikhonov ones. In this respect
the new solution follows closer the behaviour observed for
the predictions of one-loop dressed perturbation theory.

The Y1(q2) seen in Fig. 3 are quite similar up to ⇠ 1
GeV. The maximum of the Padé solution being slightly
smaller than those of [3] and its deep infrared values, i.e.
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built our anzats such that the soft-gluon limit from QCD
lattice simulations of �1 is incorporated. In section 5, we
present the results from the inversion of the Schwinger-
Dyson equations to get the coe�cients of the Padé ap-
proximants for the quark-ghost kernel relying on simulat-
ing annealing to minimize the sum of the relative error of
the scalar and vector equations. In section 6 we present
our results for the form factors of the longitudinal com-
ponents of the quark-gluon vertex and also analyze their
contribution of the quark-ghost kernel separately and we
close this section with a summary of our work.

2 The Quark Gap Equation and the
Quark-Gluon Vertex

The quark propagator is color diagonal and its spin-Lorentz
structure reads, in Minkowski space,

S
�1(p) = �i

�
A(p2)/p �B(p2)

�
= �i Z2( /p�m

bm)+⌃(p2)
(1)

where Z(p2) = 1/A(p2) is the quark wave function renor-
malisation,M(p2) = B(p2)/A(p2) the renormalisation group
invariant running quark mass, Z2 is the quark renormal-
isation constant and m

bm the bare current quark mass.
The quark self-energy is given by

⌃(p2) = Z1

Z
d
4
q

(2⇡)4
D

ab
µ⌫(q) ( i g t

b
�⌫ )

⇥S(p� q) � a
µ (�p, p� q, q), (2)

where Z1 is a combination of several renormalisation con-
stants and the Landau gauge gluon propagator is

D
ab
µ⌫(q) = �i �

ab

✓
gµ⌫ � qµq⌫

q2

◆
D(q2) . (3)

The quark-gluon vertex is defined with incoming momenta
p1 + p2 + p3 = 0, where p2 is the incoming quark momen-
tum, �p1 the outgoing quark momentum and p3 the in-
coming gluon momentum. Our notation follows that used
in [3,4]. The one-particle irreducible quark-gluon Green
function is depicted as

�
a
µ (p1, p2, p3) = g t

a
�µ(p1, p2, p3) , (4)

where g is the strong coupling constant and t
a are the

generators of the color SU(3) group in the fundamental
representation.

Assuming that the gluon propagator and �
a
µ are known,

from the gap equation (2), one can get the quark propaga-
tor. If Z(p2) and M(p2) are known, it is possible to use (2)
to extract information on the quark-gluon vertex. From
the mathematical point of view, computing �

a from the
gap equation means solving an ill-defined problem. The in-
troduction of a prior, that can be accommodated by reg-
ularising the integral equation or introducing a basis of
functions, allows to exactly and unambiguously solve the
modified equation for the vertex. The solution depends on

the prior and one should check its (in)dependence on the
prior.

The vertex function �µ, see Eq. (4), can be decom-

posed in a longitudinal � (L)
µ and a transverse �

(T )
µ com-

ponent, relative to the gluon momenta, as

�µ(p1, p2, p3) = �
(L)
µ (p1, p2, p3) + �

(T )
µ (p1, p2, p3) (5)

and, by definition, pµ3 �
(T )
µ (p1, p2, p3) = 0. As is usual

in the analysis of the Dyson-Schwinger equations, in the
current work we will focus on the longitudinal component

of the �µ and will ignore �
(T )
µ . If a tensor basis for �

(L)
µ

and �
(T )
µ is given, then �µ is a sum of scalar form factors

that multiply each of the elements of the tensor basis. The
full vertex requires twelve form factors, with four of them
being associated with the longitudinal component that in
the Ball and Chiu basis [7] are

�
L
µ (p1, p2, p3) = �i

✓
�1 �µ + �2 (/p1 � /p2) (p1 � p2)µ

+ �3 (p1 � p2)µ + �4 �µ⌫ (p1 � p2)
⌫
◆
,

(6)

where �µ⌫ = 1
2 [�µ, �⌫ ] and �i = �i(p21, p

2
2, p

2
3). The symme-

tries of QCD constraint the quark-gluon vertex. For the
longitudinal form factors, charge conjugation invariance
[4] requires

�i

�
p
2
1, p

2
2, p

2
3

�
= �i

�
p
2
2, p

2
1, p

2
3

�
|i=1,2,3,

�4

�
p
2
1, p

2
2, p

2
3

�
= ��4

�
p
2
2, p

2
1, p

2
3

�
. (7)

These properties under interchange of quark momenta im-
ply that when p

2
1 = p

2
2 and, therefore, �4 = 0 as happens

for the soft-gluon limit where p3 = 0.
The Slavnov-Taylor identity (STI) for the quark-gluon

vertex,

p
µ
3 �µ(p1, p2, p3) =

F (p23)
h
S

�1(�p1)H(p1, p2, p3)�H(p2, p1, p3)S
�1(p2)

i
,

(8)

relates the �i’s with the quark propagator, the quark-ghost
kernels that are define by H and H, see [4] for notation
and definitions, and the ghost dressing function F (p23),
related to the ghost propagator by

D
ab(p2) = �i �

ab
F (p2)/p2 . (9)

The quark-ghost kernel can be written in terms of four
form factors [4], called Xi ⌘ Xi(p21, p

2
2, p

2
3) and Xi ⌘

Xi(p22, p
2
1, p

2
3) , as

H(p1, p2, p3) = X0ID +X1 /p1 +X2 /p2 +X3 �↵� p
↵
1 p

�
2 ,

H(p2, p1, p3) = X0ID �X2 /p1 �X1 /p2 +X3 �↵� p
↵
1 p

�
2 .

(10)
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enhancement occurs preferably at momenta of ∼ ΛQC D .
Furthermore, the vertex is enhanced when all momenta enter-
ing the vertex (see Fig. 1) tends to be parallel in pairs, solving
in this way the compromise that the momenta are restricted
to a region around ΛQC D . Within our solution for the quark-
gluon vertex, the dominant form factors are associated with
the tree level vertex γµ and the operator 2 pµ+qµ. The higher
rank tensor structures give sub-leading contributions to the
vertex.

In the current work, the vertex is written using the Ball-
Chiu construction. It is known that the Ball-Chiu vertex
has kinematical singularities for the Landau gauge [37] that
are associated to the transverse form factors (see definitions
below). These singularities can be avoided by considering
a different tensor basis for the full vertex as described, for
example, in [37]. However, the singularities are not associ-
ated to the longitudinal form factors and our calculation only
takes into account this class of form factors.

The paper is organised as follows. In Sect. 2 we intro-
duce the notation for the propagators, the Dyson–Schwinger
equations and the quark-gluon vertex. Moreover, we use a
Slavnov–Taylor identity to rewrite the vertex in terms of the
quark propagators functions and the quark-ghost kernel. The
parametrisation of the quark-ghost kernel is also discussed.
In Sect. 3 the scalar and vector components of the DSE in
Minkowski space are given, together with the corresponding
kernels. In Sect. 4 the DSE are rewritten in Euclidean space,
introduce the vertex ansatz and perform a scaling analysis of
the integral equations. In Sect. 5 we give the details of the
lattice data used in the current work for the various propa-
gators and on the functions that parametrise the lattice data.
The kernels for the Euclidean space DSE are discussed in
Sect. 6, together with the solutions for the vertex of the gap
equation. The quark-gluon vertex form factors are reported
in Sect. 7 for several kinematical configurations. Finally, on
Sect. 8 we summarise and conclude.

2 The quark gap equation and the quark-gluon vertex

In this section the notation used through out the article is
defined. In this first part of this work, the equations discussed
are written in Minkowski space with the diagonal metric g =
(1, −1, −1, −1). Let us follow the notation of [38] for the
quark-gluon vertex represented in Fig. 1 that considers all
momenta are incoming and, therefore, verify

p1 + p2 + p3 = 0. (1)

The one-particle irreducible Green’s function associated to
the vertex reads

Γ a
µ (p1, p2, p3) = g ta Γµ(p1, p2, p3), (2)

where g is the strong coupling constant and ta are the color
matrices in the fundamental representation.

The quark propagator is diagonal in color and its spin-
Lorentz structure is given by

S(p) = i
A(p2)/p − B(p2)

= i
A(p2)/p + B(p2)

A2(p2) p2 − B2(p2)

= i Z(p2)
/p + M(p2)

p2 − M2(p2)
, (3)

where Z(p2) = 1/A(p2) stands for the quark wave function
and M(p2) = B(p2)/A(p2) is the renormalisation group
invariant running quark mass.

The Dyson–Schwinger equation for the quark propagator,
also named the quark gap equation, is represented in Fig. 2
and can be written as

S−1(p) = −i Z2( /p − mbm) + Σ(p2), (4)

where Z2 is the quark renormalisation constant, mbm the bare
current quark mass and the quark self-energy is given by

Σ(p2) = Z1

∫
d4q

(2π)4

×Dab
µν(q) ( i g tbγν ) S(p − q) Γ a

µ (−p, p − q, q), (5)

where Z1 is a combination of several renormalisation con-
stants, Dab

µν(q) is the gluon propagator that, in the Landau
gauge, is given by

Dab
µν(q) = −i δab

(
gµν − qµqν

q2

)
D(q2) ; (6)

below both Dab
µν(q) and D(q2) will be referred to as the gluon

propagator.
A key ingredient in gap Eq. (4) is the quark-gluon vertex.

Indeed, it is only after knowing Γ a
µ or, equivalently Γµ, that

Z(p2) and M(p2) can be computed. The Lorentz structure

[
p

]−1 =
p

[ ]−1 +
p

q = p − k

k

Fig. 2 The Dyson–Schwinger equation for the quark. The solid blobs
denote dressed propagators and vertices
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in this way the compromise that the momenta are restricted
to a region around ΛQC D . Within our solution for the quark-
gluon vertex, the dominant form factors are associated with
the tree level vertex γµ and the operator 2 pµ+qµ. The higher
rank tensor structures give sub-leading contributions to the
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Chiu construction. It is known that the Ball-Chiu vertex
has kinematical singularities for the Landau gauge [37] that
are associated to the transverse form factors (see definitions
below). These singularities can be avoided by considering
a different tensor basis for the full vertex as described, for
example, in [37]. However, the singularities are not associ-
ated to the longitudinal form factors and our calculation only
takes into account this class of form factors.
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quark propagators functions and the quark-ghost kernel. The
parametrisation of the quark-ghost kernel is also discussed.
In Sect. 3 the scalar and vector components of the DSE in
Minkowski space are given, together with the corresponding
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The one-particle irreducible Green’s function associated to
the vertex reads
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where Z(p2) = 1/A(p2) stands for the quark wave function
and M(p2) = B(p2)/A(p2) is the renormalisation group
invariant running quark mass.

The Dyson–Schwinger equation for the quark propagator,
also named the quark gap equation, is represented in Fig. 2
and can be written as
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gluon vertex, the dominant form factors are associated with
the tree level vertex γµ and the operator 2 pµ+qµ. The higher
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ing the vertex (see Fig. 1) tends to be parallel in pairs, solving
in this way the compromise that the momenta are restricted
to a region around ΛQC D . Within our solution for the quark-
gluon vertex, the dominant form factors are associated with
the tree level vertex γµ and the operator 2 pµ+qµ. The higher
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In the current work, the vertex is written using the Ball-
Chiu construction. It is known that the Ball-Chiu vertex
has kinematical singularities for the Landau gauge [37] that
are associated to the transverse form factors (see definitions
below). These singularities can be avoided by considering
a different tensor basis for the full vertex as described, for
example, in [37]. However, the singularities are not associ-
ated to the longitudinal form factors and our calculation only
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The paper is organised as follows. In Sect. 2 we intro-
duce the notation for the propagators, the Dyson–Schwinger
equations and the quark-gluon vertex. Moreover, we use a
Slavnov–Taylor identity to rewrite the vertex in terms of the
quark propagators functions and the quark-ghost kernel. The
parametrisation of the quark-ghost kernel is also discussed.
In Sect. 3 the scalar and vector components of the DSE in
Minkowski space are given, together with the corresponding
kernels. In Sect. 4 the DSE are rewritten in Euclidean space,
introduce the vertex ansatz and perform a scaling analysis of
the integral equations. In Sect. 5 we give the details of the
lattice data used in the current work for the various propa-
gators and on the functions that parametrise the lattice data.
The kernels for the Euclidean space DSE are discussed in
Sect. 6, together with the solutions for the vertex of the gap
equation. The quark-gluon vertex form factors are reported
in Sect. 7 for several kinematical configurations. Finally, on
Sect. 8 we summarise and conclude.

2 The quark gap equation and the quark-gluon vertex

In this section the notation used through out the article is
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Indeed, it is only after knowing Γ a
µ or, equivalently Γµ, that
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(Nakanishi 1962)

Bosons: Kusaka and Williams, PRD 51 (1995) 7026;
Light-front projection: integration in k-Carbonell&Karmanov EPJA27(2006)1;EPJA27(2006)11; 
TF, Salme, Viviani PRD89(2014) 016010,…
Fermions (0-): Carbonell and Karmanov EPJA 46 (2010) 387;  
de Paula, TF,Salmè, Viviani PRD 94 (2016) 071901;  
de Paula, TF, Pimentel, Salmè, Viviani, EPJC 77 (2017) 764

Each BS amplitude component:

Main Tool: Nakanishi Integral Representation (NIR)

Pion BS amplitude

i
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Light-Front coordinates:

LF amplitudes

LF-time

Projecting BSE onto the LF hyper-plane x+=0

Within the LF framework, the valence wf
is obtained by integrating the BSA on k-

(elimination of the relative LF time)

The	coupled	equation	system	is	(NIR+LF	projection,	Karmanov &	Carbonell 2010)	

Kernel contains singular contributions:

Carbonell and Karmanov EPJA 46 (2010) 387

de Paula, TF,Salmè, Viviani PRD 94 (2016) 071901;  
de Paula, TF, Pimentel, Salmè, Viviani, EPJC 77 (2017) 764

The coupled equations are formally equivalent to BSE, once NIR is applied, and the 
validity of NIR is assessed by the existence of  unique solutions to the GEVP!

Generalized Stietjes transform: inversible Carbonell, TF,  Karmanov PLB769 (2017) 418
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BS norm, valence wave function, decay constant

by the treatment of the spin degrees of freedom acting in the problem. They
were successfully accounted by the methods developed in [30] (see Ref. [55]
for an early discussion of those singularities). The above set of integral equa-
tions is solved numerically by matrix methods, using an expansion in Laguerre
and Gegenbauer polynomials of the weight function in the � and z variables,
respectively.

Valence probability and LF momentum distributions. The valence probability
and momentum distributions can be derived resorting to the LF quantum-field
theory methods (see Ref.[56]), where one defines the creation and annihilation
operators for particles and antiparticles onto the null-plane with arbitrary
spin, in order to construct the generic LF Fock state. Then, one ultimately
recognizes that the evaluation of the valence wave function comes from the
elimination of the relative light front time between quark operators entering
the matrix element between the vacuum and hadron state, which defines the
BS amplitude. Alternatively, the valence wave function can be obtained using
the quasi-potential expansion method adapted to perform the LF projection
of the BS equation and amplitude (see Refs. [23,24,57,58] for details). For
instance one has for the valence probability [57]:

Pval =
Nc

27 ⇡2

Z 1

�1
dz

Z 1

0
d�

Z dk�

2⇡

Z dk0�

2⇡
Tr

n
�+ �(k, p) �+ �̄(k0, p)

o
, (7)

where � = k2
? and z = 2⇠ � 1, with the quark Bjorken momentum fraction

0 < ⇠ < 1. Calculating the traces and integrating over k� and k0� one finds
that

Pval =
Z 1

�1
dz

Z 1

0
d� Pval(�, z) , (8)

where the valence momentum distribution density is:

Pval(�, z) = P"#
val(�, z) + P##

val(�, z) , (9)

where the anti-aligned quark spin probability density is:

P"#
val(�, z) =

Nc

16 ⇡2
| "#

val(�, z)|2 , (10)

and the density for the spin aligned configuration is:

P""
val(�, z) =

Nc

16 ⇡2
| ""

val(�, z)|2 . (11)

The anti-parallel helicity component is given by [68]

i
2p+

M
 "#(�, z) =

1

2

Z dk�

2⇡
Tr[�+�5�(k, p)], (12)

6

Normalization:

The two spin-components of the wave function are written in terms of auxiliary
amplitudes, where the leading asymptotic behaviour for large b is factor out:

 ̃"#(z̃, b) = e�b �"#(z̃, b) and  ̃""(z̃, b) = e�b �""(z̃, b) (29)

where

�"#(z̃, b) = �
eb

2(2⇡)2M

Z 1

0
d�

Z 1

0
d⇠ F0(⇠, �, b) cos(⇠z̃) g2(�, z)|z=2⇠�1

�
eb

2(2⇡)2M

Z 1

0
d�

Z 1

0
d⇠ F0(⇠, �, b)

⇣
⇠ � 1

2

⌘
cos(⇠z̃) g3(�, z)|z=2⇠�1

+
eb

2(2⇡)3M3

Z 1

0
d�

Z 1

0
d⇠ F 0

0(⇠, �, b) cos(⇠z̃)
@

@z
g3(�, z)|z=2⇠�1 , (30)

�""(z̃, b) = �
eb

2(2⇡)2M2

Z 1

0
d�

Z 1

0
d⇠ F1(⇠, �, b) cos(⇠z̃) g4(�, z)|z=2⇠�1.(31)

Instead the direct pion wave functions for the purpose of the presentation,
we will provide results for the amplitudes �"#(z̃, b) and �""(z̃, b), where the
exponential drop is softened. The cos(⇠z̃) close to the origin can be expanded
in a Taylor series for both �"# and �"" as:

�"#(z̃, b) =�
eb

2(2⇡)2M

1X

n=0

(�1)nz̃2n

(2n)!

Z 1

0
d⇠ ⇠2n

⇢ Z 1

0
d� F0(⇠, �, b) g2(�, z)|z=2⇠�1

+
Z 1

0
d�

Z 1

0
d⇠

⇣
⇠ � 1

2

⌘
F0(⇠, �, b) g3(�, z)|z=2⇠�1

� 1

M2

Z 1

0
d�

Z 1

0
d⇠ F 0

0(⇠, �, b)
@

@z
g3(�, z)|z=2⇠�1

�
, (32)

�""(z̃, b) =�
eb

2(2⇡)2M2

1X

n=0

(�1)nz̃2n

(2n)!

Z 1

0
d�

Z 1

0
d⇠ ⇠2n F1(⇠, �, b) g4(�, z)|z=2⇠�1.

Normalization. In order to calculate hadronic observables, namely in our case
the valence probability and momentum distributions, the BS amplitude has
to be properly normalized, and in the ladder approximation it reads [60]

Tr

Z
d4k

(2⇡)4
@

@p0µ
{S�1(k � p0/2)�̄(k, p)S�1(k + p0/2)�(k, p)}|p0=p

�
= i 2pµ . (33)

Therefore, by using Eq. (3), and performing the Dirac trace, the normalization
condition turns to be:

i Nc

Z
d4k

(2⇡)4

h
�1�1 + �2�2 + b�3�3 + b�4�4 � 4 b�1�4 � 4

m

M
�2�1

i
= �1 , (34)
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where the higher Fock state contributions to the form factor are summed up in the nonvalence
form factor, with Fnval(0) = 1 � Pval for its normalization. Therefore, once we are able to
compute the valence contribution to the form factor, the nonvalence part of the form factor
can be obtained by using (14), and the role of higher Fock-components in composing the form
factor can be accessed, as for example, the nonvalence charge radius.

Valence electromagnetic form factor. The valence contribution to the pion electromagnetic
form factor at a given momentum transfer Q2 can be written as [30] (see also [31, 32]):

F val(Q
2) =

Nc

16⇡3

Z
d
2
k?

Z 1

�1

dz

h
 

⇤
"#(�

0
, z) "#(�

00
, z) +

~k
0
? · ~k00

?
k
0
?k

00
?
 

⇤
""(�

0
, z) ""(�

00
, z)

i
, (15)

where Q
2 = |~q?|2, � = |~k?|2, �0 = |~k0

?|2, �00 = |~k00
?|2,

~k
0
? = ~k? +

1

4
(1� z)~q?, ~k

00
? = ~k? � 1

4
(1� z)~q? = ~k0? � 1

2
(1� z)~q? ,

~k
0
? · ~k00

? = � � (1� z)2

16
Q

2 and ~k? · ~q? = |~k?||~q?| cos ✓ .
(16)

In Eq. (15) the antiparallel spin component ( "#), and the parallel one ( ""), are given by
[24]

 "#(�, z) = �i
M

4p+

Z
dk

�

2⇡
Tr[�+�5�(k; p)]

=  2(�, z) +
z

2
 3(�, z) +

Z 1

0

d�
0

M3

@g3(�0, z)/@z

[� + �0 + z2m2 + (1� z2)2]
,

 ""(�, z) =

p
�M

4ip+

Z
dk

�

2⇡
Tr[�+i

�5�(k; p)] =

p
�

M
 4(�, z),

(17)

with

 i(�, z) = �
Z 1

0

d�
0

M

gi(�0, z)

[� + �0 +m2z2 + (1� z2)2]2
. (18)

The decay constant is obtained from the spin antiparallel valence pion wave function, and
using the plus component of the axial-current as:

f⇡ = �i
Nc

p+

Z
d
4
k

(2⇡)4
Tr[ �+ �5 �(p, k)] =

2Nc

M

Z
d
2
k?

(2⇡)2
dk

+

2⇡
 "#(�, z) , (19)

with k
+ = p

+
z/2 (p+ = M), and where we have used that d4k = 1

2d
2
k?dk

+
dk

� and introduced
Eq. (17) for the antiparallel spin component. On the other side the decay constant can be also
written in the form:

f⇡ = � Nc

2(2⇡)2M

Z 1

0

d�
0
Z 1

�1

dz

Z 1

0

d�
g2(�, z)

[� + �0 +m2z2 + (1� z2)2]2
, (20)

where the contribution of g3 from the valence wave function is exactly canceled.
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where the contribution of g3 from the valence wave function is exactly canceled.

6

Valence wf:

Paula, Ydrefors, Alvarenga Nogueira, TF and Salme PRD 103 014002 (2021).

132 6. Fermion-antifermion bound state: Pion phenomenology

Moreover, in Eq. (6.1) the Dirac propagator S for a fermion of mass m reads

S(k) = i
/k + m

k2 ≠ m2 + i‘
. (6.3)

Furthermore, �̂2 = C�T
2 C and the vertex "quark-gluon" form factor F is of the form

F (k ≠ kÕ) = µ2 ≠ �2

(k ≠ kÕ)2 ≠ �2 + i‘
, (6.4)

where � is a suitable scale for giving the size of the color distribution of the interaction
vertex. It is worth mentioning that the form factor F acts as a regulator to avoid
the breakdown following from scale invariance in the ultraviolet region that also
happens in the present system, similarly to what was discussed in Sec. 5.2 for the
boson-fermion bound state.

The BS amplitude can be decomposed as

�(k, p) =
4ÿ

i=1
Si(k, p)„i(k, p), (6.5)

where each „i is a scalar function of the invariants k2, p2, k·p. The symmetry property
of the scalar functions, i.e. k æ ≠k for „i(k, p), can be straightforwardly translated
to the corresponding properties of the Nakanishi weight function, gi(“Õ, zÕ; Ÿ2), which
is associated with the exchange zÕ æ ≠zÕ. Hence, the weight functions must be even
for i = 1, 2, 4 and odd for i = 3. Moreover, the allowed Dirac structures read

S1(k, p) = “5, S2(k, p) = /p

M
“5, S3(k, p) =

Ë(k · p)
M3 /p ≠ 1

M
/k

È
“5,

S4(k, p) = i

M2 ‡µ‹pµk‹“5.
(6.6)

The NIR can subsequently be applied to each scalar functions, „i, i.e.,

„i(k, p) =
⁄ 1

≠1
dzÕ

⁄ Œ

0

gi(“Õ, zÕ; Ÿ2)
[k2 + (p · k)zÕ ≠ “Õ ≠ Ÿ2 + i‘]3 (6.7)

with Ÿ2 = m2 ≠ M2/4.
Noteworthy to mention that the Si operators of Eq. (6.6), present in the amplitude

�(k, p), together with the fermionic propagators (6.3) bring terms that produce
extra singularities, not present for the boson-boson or fermion-boson systems.

By inserting Eqs. (6.7) and (6.5) in (6.1), and subsequently performing the
light-front projection one can derive the following set of coupled integral equations
for the Nakanishi weight functions [50, 51]

⁄ Œ

0
d“Õ gi(“Õ, z; Ÿ2)

[“ + “Õ + m2z2 + (1 ≠ z2)Ÿ2]2 =

–
4ÿ

j=1

⁄ 1

≠1
dzÕ

⁄ Œ

0
d“Õ#L(ns)

ij
(“, z, “Õ, zÕ) + L(s)

ij
(“, z, “Õ, zÕ)

$
gj(“Õ, zÕ; Ÿ2),

(6.8)
 i(�, z;

2
) =
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8

Set m B/m µ/m ⇤/m ↵s (↵s) Pval P"# P"" f⇡/m f⇡

I 187 1.25 0.15 2 5.146 (23.13) 0.64 0.55 0.09 0.414 77

II 255 1.45 1.5 1 52.78 (21.54) 0.65 0.55 0.10 0.433 112

III 215 1.35 2 1 76.28 (18.16) 0.67 0.57 0.11 0.453 98

IV 255 1.45 2 1 78.01 (18.57) 0.66 0.56 0.11 0.459 117

V 255 1.45 2.5 1 108.87 (16.87) 0.68 0.56 0.11 0.477 122

VI 255 1.45 2.5 1.1 87.66 (13.59) 0.69 0.56 0.12 0.498 127

VII 255 1.45 2.5 1.2 72.32 (11.21) 0.70 0.57 0.13 0.511 130

VIII 215 1.35 1 2 10.20 (8.50) 0.71 0.57 0.14 0.520 112

IX 187 1.25 1 2 9.96 (8.30) 0.71 0.58 0.14 0.514 96

TABLE I. Pion model with m⇡ = 140 MeV for di↵erent parameter sets, m and f⇡ in MeV. Calculated valence probability,
total, antiparallel and parallel, and decay constant. The values of the coupling constant ↵s and the e↵ective strength,
defined in Eq. (46), are also given.

to 0.71 and f⇡ between 77 and 130 MeV. The calcu-
lations are organized according to the dimensionless
e↵ective kernel strength ↵s, introduced as

↵s =
↵s

µ2

m2 + 0.2
with ↵s =

g2

4⇡
(1� µ2/⇤2)2 , (46)

where the value of average momentum
p
0.2m has its

correspondence on the characteristic scale for the de-
creasing behaviour of the transverse momentum dis-
tribution in the model, as it will be clear when present-
ing results for this quantity. The valence probabilities
for the antiparallel and parallel valence spin compo-
nents are shown in Table I, where it is found that the
values range from 0.55 to 0.58 and from 0.09 to 0.14,
respectively.
The probabilities seem to be organized following ↵̄s

and increase as it decreases. This tendency is some-
what natural to expect, as ↵̄s weights e↵ectively the
coupling to the higher Fock states present in the dy-
namical model. The ratio f⇡/m is associated with the
spin antiparallel wave function at the origin (see Eq.
(35)), which is depleted as the higher Fock-states, cor-
responding to more compact configurations, are pop-
ulated as the coupling of these Fock states with the
valence one is favored at short distances. The higher-
Fock components are associated with high virtuality
and thus present themselves at small distances. Ob-
serve, the spread of the values of f⇡ as it carries the
constituent quark mass, in addition to the dependence
on ↵̄s.
We found that, the higher Fock components con-

tent of the LF pion wave function is appreciable in
this model with probability about 30%. The ladder
kernel of the BS equation when projected onto the LF

[12, 13, 15, 16] takes into account an infinite number
of Fock-components beyond the valence state, built
as a qq̄ pair and any number of gluons. We have not
yet computed how the remaining probability is dis-
tributed among the first components, thought it is
indicative that the lowest value for the valence proba-
bility is found for the smallest e↵ective gluon mass,
where it is supposedly more likely that the higher
Fock-states are populated. In the limit µ ! 0, the va-
lence probability accommodates within a finite value
as the quark-gluon vertex has a definite size in our
model.

We should remind that the BS equation for the
model is ill-behaved for ⇤ ! 1, as the coupling con-
stant is dimensionless. In such case the BS integral
equation for the bound state has a continuous scale
invariance in the UV, which implies that above a crit-
ical value of coupling the model has no stable solutions
(see e.g. [5]), and the scale invariance is broken to a
discrete one, demanding a cut-o↵ to recover stabil-
ity. However, the quark-gluon vertex has a strong IR
enhancement with a UV tail carrying a perturbative
value of ↵s, well below the critical coupling constant
[7]. Below the critical coupling the UV behavior of the
BS amplitude is dominated by power law form with
exponents depending on the ↵s. In our case as we are
going to show this dependence is reflected on the run-
ning of the end-point behavior of the valence parton
distribution with ↵̄s.

In a concise way, Table I emphasizes two main fea-
tures, which can be identified: (i) the infrared proper-
ties reflected in the decay constant, with the conspic-
uous relation to the constituent quark mass, and (ii)
the ultraviolet properties reflected at the end points

where the higher Fock state contributions to the form factor are summed up in the nonvalence
form factor, with Fnval(0) = 1 � Pval for its normalization. Therefore, once we are able to
compute the valence contribution to the form factor, the nonvalence part of the form factor
can be obtained by using (14), and the role of higher Fock-components in composing the form
factor can be accessed, as for example, the nonvalence charge radius.

Valence electromagnetic form factor. The valence contribution to the pion electromagnetic
form factor at a given momentum transfer Q2 can be written as [30] (see also [31, 32]):
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where Q
2 = |~q?|2, � = |~k?|2, �0 = |~k0
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?|2,
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(16)

In Eq. (15) the antiparallel spin component ( "#), and the parallel one ( ""), are given by
[24]

 "#(�, z) = �i
M

4p+

Z
dk

�

2⇡
Tr[�+�5�(k; p)]

=  2(�, z) +
z

2
 3(�, z) +

Z 1

0

d�
0

M3

@g3(�0, z)/@z

[� + �0 + z2m2 + (1� z2)2]
,

 ""(�, z) =

p
�M

4ip+

Z
dk

�

2⇡
Tr[�+i

�5�(k; p)] =

p
�

M
 4(�, z),

(17)

with

 i(�, z) = �
Z 1

0

d�
0

M

gi(�0, z)

[� + �0 +m2z2 + (1� z2)2]2
. (18)

The decay constant is obtained from the spin antiparallel valence pion wave function, and
using the plus component of the axial-current as:

f⇡ = �i
Nc

p+

Z
d
4
k

(2⇡)4
Tr[ �+ �5 �(p, k)] =

2Nc

M

Z
d
2
k?

(2⇡)2
dk

+

2⇡
 "#(�, z) , (19)

with k
+ = p

+
z/2 (p+ = M), and where we have used that d4k = 1

2d
2
k?dk

+
dk

� and introduced
Eq. (17) for the antiparallel spin component. On the other side the decay constant can be also
written in the form:

f⇡ = � Nc

2(2⇡)2M

Z 1

0

d�
0
Z 1

�1

dz

Z 1

0

d�
g2(�, z)

[� + �0 +m2z2 + (1� z2)2]2
, (20)

where the contribution of g3 from the valence wave function is exactly canceled.
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Valence probability:

by the treatment of the spin degrees of freedom acting in the problem. They
were successfully accounted by the methods developed in [30] (see Ref. [55]
for an early discussion of those singularities). The above set of integral equa-
tions is solved numerically by matrix methods, using an expansion in Laguerre
and Gegenbauer polynomials of the weight function in the � and z variables,
respectively.

Valence probability and LF momentum distributions. The valence probability
and momentum distributions can be derived resorting to the LF quantum-field
theory methods (see Ref.[56]), where one defines the creation and annihilation
operators for particles and antiparticles onto the null-plane with arbitrary
spin, in order to construct the generic LF Fock state. Then, one ultimately
recognizes that the evaluation of the valence wave function comes from the
elimination of the relative light front time between quark operators entering
the matrix element between the vacuum and hadron state, which defines the
BS amplitude. Alternatively, the valence wave function can be obtained using
the quasi-potential expansion method adapted to perform the LF projection
of the BS equation and amplitude (see Refs. [23,24,57,58] for details). For
instance one has for the valence probability [57]:

Pval =
Nc

27 ⇡2

Z 1
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dz

Z 1
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Z dk�
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Z dk0�
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Tr
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o
, (7)

where � = k2
? and z = 2⇠ � 1, with the quark Bjorken momentum fraction

0 < ⇠ < 1. Calculating the traces and integrating over k� and k0� one finds
that

Pval =
Z 1
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dz
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Nc

16 ⇡2
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i
(8)

where the valence momentum distribution density is:

Pval(�, z) = P"#
val(�, z) + P##

val(�, z) , (9)

where the anti-aligned quark spin probability density is:

P"#
val(�, z) =

Nc

16 ⇡2
| "#

val(�, z)|2 , (10)

and the density for the spin aligned configuration is:

P""
val(�, z) =

Nc

16 ⇡2
| ""

val(�, z)|2 . (11)
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Decay constant:

8

Set m B/m µ/m ⇤/m ↵s (↵s) Pval P"# P"" f⇡/m f⇡

I 187 1.25 0.15 2 5.146 (23.13) 0.64 0.55 0.09 0.414 77

II 255 1.45 1.5 1 52.78 (21.54) 0.65 0.55 0.10 0.433 112

III 215 1.35 2 1 76.28 (18.16) 0.67 0.57 0.11 0.453 98

IV 255 1.45 2 1 78.01 (18.57) 0.66 0.56 0.11 0.459 117

V 255 1.45 2.5 1 108.87 (16.87) 0.68 0.56 0.11 0.477 122

VI 255 1.45 2.5 1.1 87.66 (13.59) 0.69 0.56 0.12 0.498 127

VII 255 1.45 2.5 1.2 72.32 (11.21) 0.70 0.57 0.13 0.511 130

VIII 215 1.35 1 2 10.20 (8.50) 0.71 0.57 0.14 0.520 112

IX 187 1.25 1 2 9.96 (8.30) 0.71 0.58 0.14 0.514 96

TABLE I. Pion model with m⇡ = 140 MeV for di↵erent parameter sets, m and f⇡ in MeV. Calculated valence probability,
total, antiparallel and parallel, and decay constant. The values of the coupling constant ↵s and the e↵ective strength,
defined in Eq. (46), are also given.

to 0.71 and f⇡ between 77 and 130 MeV. The calcu-
lations are organized according to the dimensionless
e↵ective kernel strength ↵s, introduced as

↵s =
↵s

µ2

m2 + 0.2
with ↵s =

g2

4⇡
(1� µ2/⇤2)2 , (46)

where the value of average momentum
p
0.2m has its

correspondence on the characteristic scale for the de-
creasing behaviour of the transverse momentum dis-
tribution in the model, as it will be clear when present-
ing results for this quantity. The valence probabilities
for the antiparallel and parallel valence spin compo-
nents are shown in Table I, where it is found that the
values range from 0.55 to 0.58 and from 0.09 to 0.14,
respectively.
The probabilities seem to be organized following ↵̄s

and increase as it decreases. This tendency is some-
what natural to expect, as ↵̄s weights e↵ectively the
coupling to the higher Fock states present in the dy-
namical model. The ratio f⇡/m is associated with the
spin antiparallel wave function at the origin (see Eq.
(35)), which is depleted as the higher Fock-states, cor-
responding to more compact configurations, are pop-
ulated as the coupling of these Fock states with the
valence one is favored at short distances. The higher-
Fock components are associated with high virtuality
and thus present themselves at small distances. Ob-
serve, the spread of the values of f⇡ as it carries the
constituent quark mass, in addition to the dependence
on ↵̄s.
We found that, the higher Fock components con-

tent of the LF pion wave function is appreciable in
this model with probability about 30%. The ladder
kernel of the BS equation when projected onto the LF

[12, 13, 15, 16] takes into account an infinite number
of Fock-components beyond the valence state, built
as a qq̄ pair and any number of gluons. We have not
yet computed how the remaining probability is dis-
tributed among the first components, thought it is
indicative that the lowest value for the valence proba-
bility is found for the smallest e↵ective gluon mass,
where it is supposedly more likely that the higher
Fock-states are populated. In the limit µ ! 0, the va-
lence probability accommodates within a finite value
as the quark-gluon vertex has a definite size in our
model.

We should remind that the BS equation for the
model is ill-behaved for ⇤ ! 1, as the coupling con-
stant is dimensionless. In such case the BS integral
equation for the bound state has a continuous scale
invariance in the UV, which implies that above a crit-
ical value of coupling the model has no stable solutions
(see e.g. [5]), and the scale invariance is broken to a
discrete one, demanding a cut-o↵ to recover stabil-
ity. However, the quark-gluon vertex has a strong IR
enhancement with a UV tail carrying a perturbative
value of ↵s, well below the critical coupling constant
[7]. Below the critical coupling the UV behavior of the
BS amplitude is dominated by power law form with
exponents depending on the ↵s. In our case as we are
going to show this dependence is reflected on the run-
ning of the end-point behavior of the valence parton
distribution with ↵̄s.

In a concise way, Table I emphasizes two main fea-
tures, which can be identified: (i) the infrared proper-
ties reflected in the decay constant, with the conspic-
uous relation to the constituent quark mass, and (ii)
the ultraviolet properties reflected at the end points

Set m B/m µ/m ⇤/m f⇡/m Pval f⇡ r⇡ (fm) rval (fm) rnval (fm)
I 187 1.25 0.15 2 0.414 0.64 77 1.035 1.099 0.913
II 255 1.45 1.5 1 0.433 0.65 110 0.718 0.770 0.610
III 215 1.35 2 1 0.453 0.67 98 0.835 0.895 0.703
IV 255 1.45 2 1 0.459 0.66 117 0.699 0.750 0.586
V 255 1.45 2.5 1 0.477 0.68 122 0.687 0.736 0.570
VI 255 1.45 2.5 1.1 0.498 0.69 126 0.674 0.722 0.553
VII 255 1.45 2.5 1.2 0.511 0.70 130 0.663 0.710 0.538
VIII 215 1.35 1 2 0.520 0.71 112 0.782 0.836 0.632
IX 187 1.25 1 2 0.514 0.71 96 0.913 0.975 0.742

Table 1: Pion model with m⇡ = 140 MeV for various parameter sets, valence probability, f⇡ in MeV, pion charge
radius, valence and non-valence charge radii. The experimental pion charge radius is 0.657± 0.003 fm [34] with

r⇡ =
q

�6 d
dQ2F⇡(Q2)|Q2=0. The experimental value of f⇡ is 130.50± 0.017 MeV from [35].

which follows from the decomposition given in Eq. (13) and the normalization of the valence
and nonvalence form factors.

It is noteworthy that the higher Fock components have a smaller size compared to the
pion itself, namely r⇡ = 0.661 fm compared to rnval = 0.537 fm, while the radius of the valence
component is rval = 0.709 fm, showing an extended valence quark charge distribution compared
to the full pion state, while the higher Fock components of the pion shows a more compact
charge distribution of the quarks.

The interpretation is quite natural considering that the higher Fock components of the pion
composed by the two valence quarks and gluons have larger virtualities, living less time and not
allowing quarks to fly far from to the pion center, making the charge distribution associated to
these higher Fock components more compact than the pion itself.

Form-factor results. The pion EM form factor and its valence contribution divided by the
monopole form factor Fmon(Q2) = 1/(1 + Q

2
/m

2
⇢) is presented in Fig. 1 and compared with

experimental data of Refs. [36, 37, 38, 39, 40, 41]. We choose the parameter sets III and VII,
with f⇡ of 98 and 130 MeV, and valence probabilities of 0.67 and 0.70, respectively. It is well
known the strong correlation between f⇡ and the pion radius [42], and in the present model
once the parameters were fine tuned to reproduce f⇡ resulting in model VII, the form factor
at low momenta is well described together with the charge radius. The valence probability of
0.70 is the same as the normalization of the valence form factor, and for quite large momentum
the nonvalence contribution becomes subleading and dominated by the valence one, as it is
known. The dynamical model gives quantitatively that this happens above 80 GeV2. In Fig. 1
the results are compared with the ones of model III, with f⇡ being 30% below the experimental
value, with a larger charge radius in the same proportion. That is reflected in the larger
slope close to Q

2 = 0, despite such a di↵erence one can also observe that at 80 GeV2 of
momentum transfer it gives 90% of the form factor and being a good guess for the beginning of
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FIG. 2. From top to bottom: anti-parallel, parallel and
total pion transverse momentum distributions for di↵erent
e↵ective gluon masses and regulator parameter taken from
Table I.

D. Distribution and transverse amplitudes

The distribution amplitudes (DA) [14, 30–32] intro-
duced through the factorization of exclusive processes
amplitudes, for the LF wave function are expressed by
the antiparalell and parallel spin components as:

'"#(⇠) =

R1
0 d�  "#(�, z)

R 1
0 d⇠

R1
0 d� "#(�, z)

,

'""(⇠) =

R1
0 d� ""(�, z)

R 1
0 d⇠

R1
0 d� ""(�, z)

. (47)

The transverse amplitude is introduced as the fol-

FIG. 3. 3D-valence momentum distribution as a function
of ⇠ and � = k2

?. Panels from top to bottom represent
the results for the parameter sets (II), (IV) and (VII),
respectively.

lowing integral of the valence LF wave function:

'T
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R 1
0 d⇠  "#(�, z)

R 1
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R1
0 d�  "#(�, z)

,

'T
""(�) =

R 1
0 d⇠  ""(�, z)

R 1
0 d⇠

R1
0 d�  ""(�, z)

, (48)

which is the Fourier transform of Eq. (45), namely the
transverse amplitude in the impact parameter space.
The transverse amplitude can be obtained also from
Euclidean space calculations [28]. We remind that
z = 2⇠ � 1 gives the relation with the momentum
fraction variable.

The results for the DA and the transverse ampli-
tude for the parameter set VII are shown in Fig. 4,
where results for the two spin components are pro-
vided. It is interesting to observe that the parallel
component in DA is wider, and decreases slower at
the end points, in comparison with the antiparallel
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e↵ective gluon masses and regulator parameter taken from
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D. Distribution and transverse amplitudes

The distribution amplitudes (DA) [14, 30–32] intro-
duced through the factorization of exclusive processes
amplitudes, for the LF wave function are expressed by
the antiparalell and parallel spin components as:
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lowing integral of the valence LF wave function:
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which is the Fourier transform of Eq. (45), namely the
transverse amplitude in the impact parameter space.
The transverse amplitude can be obtained also from
Euclidean space calculations [28]. We remind that
z = 2⇠ � 1 gives the relation with the momentum
fraction variable.

The results for the DA and the transverse ampli-
tude for the parameter set VII are shown in Fig. 4,
where results for the two spin components are pro-
vided. It is interesting to observe that the parallel
component in DA is wider, and decreases slower at
the end points, in comparison with the antiparallel

processes and can be expressed as an integral on the
transverse-momentum dependence of the valence wave
function. In particular, we have evaluated the following
spin decompositions:

φ↑↓ðξÞ ¼
R∞
0 dγψ↑↓ðγ; zÞR

1
0 dξ

R∞
0 dγψ↑↓ðγ; zÞ

;

φ↑↑ðξÞ ¼
R∞
0 dγψ↑↑ðγ; zÞR

1
0 dξ

R∞
0 dγψ↑↑ðγ; zÞ

: ð49Þ

Analogously, we have introduced the transverse distri-
bution amplitude (TDA) by integrating the valence wave
function over the fraction of longitudinal momentum
carried by the valence quark (recall z ¼ 1–2ξ), viz.

φT
↑↓ðγÞ ¼

R
1
0 dξψ↑↓ðγ; zÞR

1
0 dξ

R∞
0 dγψ↑↓ðγ; zÞ

;

φT
↑↑ðγÞ ¼

R
1
0 dξψ↑↑ðγ; zÞR

1
0 dξ

R∞
0 dγψ↑↑ðγ; zÞ

: ð50Þ

It has to be pointed out that the TDA is the Fourier
transform of Eq. (42), namely, the transverse amplitude
in the transverse-coordinates space. The TDA can be also
obtained from Euclidean-space calculations (see, e.g.,
Ref. [42]).
The results for the two spin configurations of both DA

and TDA, obtained by using the parameters of the set VIII,
are shown in Fig. 5. It is interesting to observe that the
aligned component of the DA is wider and decreases
slower at the end points than the antialigned component,
as it happens for the longitudinal-momentum distributions
(cf. Table II). The corresponding features can be recognized
in the TDA case, where calculations are presented up to
γ=m2 ∼ 5 (about 0.3 GeV2) showing the characteristic IR
scale of about γ=m2 ∼ 0.2, implicitly carried by our input
parameters. It should be recalled that while the UV region
is governed by the one-gluon exchange, i.e., the short-
range interaction, the IR region incorporates the features
dictated by the long-range correlations in the transverse-
coordinate space.

C. The 3D image of the pion on the null-plane

In the 3D space described by the Ioffe-time and the
transverse coordinates, one can obtain an image of the
pion in terms of the two spin components of the valence
wave function, i.e., χ↑↓ð↑↑Þðz̃; bÞ, given in Eq. (39). Such a
picture of the pion allows one to understand better the
interplay between short and long lightlike distances in the
description of the hadron structure (see Sec. V). In view of
this, one notices that the region with small values of fz̃;bg
is the place where the UV effects should manifest. Beside
the 3D image, we also present the transverse amplitudes,
φ̃T
↑↓ðbÞ and φ̃T

↑↑ðbÞ, given in Eq. (42), since they could be
the target of LQCD studies. To perform the calculations
shown in this subsection, we have used the parameter set
VIII (see Table I) that fits the pion decay constant.
The 3D image of the pion spin components on the null-

plane is provided in Fig. 6. Notice that the exponential
factor expð−κbÞ, present in the Fourier transform of
φ2ðξ;k⊥; σi;M; Jπ; JzÞ [cf. Eqs. (B2)–(B4)] is factorized
out in both χ↑↓ð↑↑Þðz̃; bÞ, allowing to use a linear scale in
the 3D plot. For the purpose of the figure, each component
is multiplied by the transverse coordinate b, canceling a
log-type singularity at b ¼ 0, generated by the Bessel
function K0.
A general feature of both densities is the sharp enhance-

ment for z̃ ¼ 0, i.e., at vanishing lightlike distances.
Inspired by such an enhancement, and in order to better
analyze the physically significant dependence upon z̃ of the
valence wave function, we have also studied the absolute
value squared of the integrals

Ψ̃↑↓ð↑↑Þðz̃Þ ¼
R∞
0 dbbψ̃↑↓ð↑↑Þðz̃; bÞR∞

0 dbb
R∞
−∞ dz̃ψ̃↑↓ð↑↑Þðz̃; bÞ

; ð51Þ

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  0.2  0.4  0.6  0.8  1

ϕ(
ξ)

ξ

 0.01

 0.1

 1

 0  1  2  3  4  5

ϕT ( γ
)

γ/m2

FIG. 5. Pion distribution amplitude (upper panel) and the
transverse one (lower panel) for the two spin components,
obtained with the parameter set VIII. Dashed line: antialigned,
S ¼ 0, component. Dash-dotted line: aligned, S ¼ 1, component.

W. DE PAULA et al. PHYS. REV. D 103, 014002 (2021)

014002-14

11

 0.001

 0.01

 0.1

 1

 0  1  2  3  4  5  6

P
(γ

)/
P

↑
↓

v
a

l

γ/m2

B/m = 1.35, µ/m = 2.0, Λ/m = 1

B/m = 1.45, µ/m = 1.5, Λ/m = 1

B/m = 1.45, µ/m = 2.0, Λ/m = 1

B/m = 1.25, µ/m = 0.15, Λ/m = 2

B/m = 1.35, µ/m = 1.0, Λ/m = 2

B/m = 1.45, µ/m = 2.5, Λ/m = 1

B/m = 1.45, µ/m = 2.5, Λ/m = 1.1

B/m = 1.45, µ/m = 2.5, Λ/m = 1.2

 0.0001

 0.001

 0.01

 0.1

 1

 0  1  2  3  4  5  6

P
(γ

)/
P

↑
 ↑

v
a

l

γ/m2

B/m = 1.35, µ/m = 2.0, Λ/m = 1.0

B/m = 1.45, µ/m = 1.5, Λ/m = 1.0

B/m = 1.45, µ/m = 2.0, Λ/m = 1.0

B/m = 1.25, µ/m = 0.15, Λ/m = 2.0

B/m = 1.35, µ/m = 1.0, Λ/m = 2.0

B/m = 1.45, µ/m = 2.5, Λ/m = 1.0

B/m = 1.45, µ/m = 2.5, Λ/m = 1.1

B/m = 1.45, µ/m = 2.5, Λ/m = 1.2

 0.001

 0.01

 0.1

 1

 0  1  2  3  4  5  6

P
(γ

)/
P

v
a

l

γ/m2

B/m = 1.35, µ/m = 2.0, Λ/m = 1

B/m = 1.45, µ/m = 1.5, Λ/m = 1

B/m = 1.45, µ/m = 2.0, Λ/m = 1

B/m = 1.25, µ/m = 0.15, Λ/m = 2

B/m = 1.35, µ/m = 1.0, Λ/m = 2

B/m = 1.45, µ/m = 2.5, Λ/m = 1

B/m = 1.45, µ/m = 2.5, Λ/m = 1.1

B/m = 1.45, µ/m = 2.5, Λ/m = 1.2
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total pion transverse momentum distributions for di↵erent
e↵ective gluon masses and regulator parameter taken from
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D. Distribution and transverse amplitudes

The distribution amplitudes (DA) [14, 30–32] intro-
duced through the factorization of exclusive processes
amplitudes, for the LF wave function are expressed by
the antiparalell and parallel spin components as:

'"#(⇠) =

R1
0 d�  "#(�, z)

R 1
0 d⇠

R1
0 d� "#(�, z)

,

'""(⇠) =

R1
0 d� ""(�, z)

R 1
0 d⇠

R1
0 d� ""(�, z)

. (47)

The transverse amplitude is introduced as the fol-

FIG. 3. 3D-valence momentum distribution as a function
of ⇠ and � = k2

?. Panels from top to bottom represent
the results for the parameter sets (II), (IV) and (VII),
respectively.

lowing integral of the valence LF wave function:

'T
"#(�) =

R 1
0 d⇠  "#(�, z)

R 1
0 d⇠

R1
0 d�  "#(�, z)

,

'T
""(�) =

R 1
0 d⇠  ""(�, z)

R 1
0 d⇠

R1
0 d�  ""(�, z)

, (48)

which is the Fourier transform of Eq. (45), namely the
transverse amplitude in the impact parameter space.
The transverse amplitude can be obtained also from
Euclidean space calculations [28]. We remind that
z = 2⇠ � 1 gives the relation with the momentum
fraction variable.

The results for the DA and the transverse ampli-
tude for the parameter set VII are shown in Fig. 4,
where results for the two spin components are pro-
vided. It is interesting to observe that the parallel
component in DA is wider, and decreases slower at
the end points, in comparison with the antiparallel
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D. Distribution and transverse amplitudes

The distribution amplitudes (DA) [14, 30–32] intro-
duced through the factorization of exclusive processes
amplitudes, for the LF wave function are expressed by
the antiparalell and parallel spin components as:

'"#(⇠) =

R1
0 d�  "#(�, z)

R 1
0 d⇠

R1
0 d� "#(�, z)

,
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which is the Fourier transform of Eq. (45), namely the
transverse amplitude in the impact parameter space.
The transverse amplitude can be obtained also from
Euclidean space calculations [28]. We remind that
z = 2⇠ � 1 gives the relation with the momentum
fraction variable.

The results for the DA and the transverse ampli-
tude for the parameter set VII are shown in Fig. 4,
where results for the two spin components are pro-
vided. It is interesting to observe that the parallel
component in DA is wider, and decreases slower at
the end points, in comparison with the antiparallel
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FIG. 1. From top to bottom: anti-parallel, parallel and
total pion valence structure functions for di↵erent e↵ective
gluon masses and regulator parameter taken from Table I.

of the longitudinal distribution, and in the high mo-
mentum behavior of the transverse momentum dis-
tribution and form factor. These characteristics will
be evidenced when exploring in detail the momentum
distributions in the following subsections.

B. Longitudinal momentum distributions

The longitudinal momentum distribution �(⇠) as a
function of the quark momentum fraction ⇠, defined
by Eq. (27), and its antiparallel and parallel compo-
nents, are shown in Fig. 1 for several cases with pa-
rameters given in Table I. The values for the gluon
mass are taken between 28 MeV (µ/m = 0.15) and
638 MeV (µ/m = 2.5) and the form factor parameter

from 255 MeV (⇤/m = 1) to 430 MeV (⇤/m = 2).
For the figure the momentum distributions are nor-
malized such that their integration is 1, namely we
divided each one by the respective probability.

Fig. 1 shows that the decrease of e↵ective dimen-
sionless strength of the kernel, ↵̄s broadens the mo-
mentum distribution, independently of the variations
of the gluon mass and vertex parameter with 1 to 2.5
times the constituent quark mass. As �(⇠) and ⇠ are
dimensionless quantities, what matters are the dimen-
sionless ratio between the di↵erent quantities with a
strongly bound pion. For this set of parameters, even
with a very light gluon the valence distribution func-
tion, does not present dramatic variations, although
visible. In the figure we have chosen to present the
spin components of the valence distribution normal-
ized to their respective probabilities. Reminding that
the parallel component represents only about 10% of
the normalization.

Set f⇡/m ⌘"# ⌘"" ⌘

I 0.414 1.81 1.61 1.77

II 0.433 1.71 1.50 1.66

III 0.453 1.66 1.47 1.62

IV 0.477 1.61 1.42 1.57

VII 0.511 1.44 1.26 1.40

VIII 0.520 1.45 1.28 1.40

TABLE II. Exponent of the fit function (1�⇠)⌘ (⇠ ! 1) for
the antiparallel, parallel and total valence distributions.

The broadening of the momentum distribution is
reflected in a slower damping of the momentum dis-
tribution at the end points, as seen in Fig. 1, in di-
rect correspondence to an increasing f⇡/m ratio and
a valence state having the quark-antiquark pair more
likely closer to the pion center. The Table II illustrates
quantitatively, for a few examples, the correspondence
between the f⇡/m ratio and the exponent of the func-
tion (1 � x)⌘ fitted from the momentum distribution
close to the end point. The increase of the power ⌘
depletes the quark distribution in the UV region, im-
plying a suppression of configurations with the valence
quark and antiquark close together, and in relation to
a decrease of the f⇡/m ratio.

The parallel longitudinal momentum distribution is
broader than the antiparallel as can be verified in Fig.
1, presenting softer end-point behaviour with expo-
nents systematically smaller than the antiparallel ones

4

and

 ""(##)(�, z) =
kL(R)

p
2

M
 4(�, z) . (18)

The arrows in the brackets correspond to � = �1 and

 i(�, z) = � i

M

⇥
Z 1

0
d�0

gi(�0, z)

[� + �0 +m2z2 + (1� z2)2 � i✏]2
. .(19)

After inserting Eq. (16) into Eq. (15) the valence
probability can be written in terms of the valence
momentum-distribution density, Pval(�, z), i.e.

Pval =

Z 1

�1
dz

Z 1

0
d� Pval(�, z) (20)

where

Pval(�, z) = P"#(�, z) + P""(�, z)
i

, (21)

with the anti-aligned and aligned probability densities
defined by

P"#(�, z) = P#"(�, z) =
Nc

16⇡2
| "#(�, z)|2 , (22)

and

P""(�, z) = P##(�, z) =
Nc

16⇡2
| ""(�, z)|2 =

=
Nc

16⇡2

�

M2
| 4(�, z)|2 . (23)

Recall that |kL(R)

p
2|2 = |k?|2 = �.

The valence longitudinal and transverse LF momen-
tum distribution densities are obtained by properly
integrating the valence probability density Pval(�, z).
In particular, the longitudinal distribution, with its
spin decomposition, is given by

�(⇠) = �"#(⇠) + �""(⇠) =

Z 1

0
d� Pval(�, z) (24)

with

�"#("")(⇠) =

Z 1

0
d� P"#("")(�, z) . (25)

For the transverse distribution one has

P (�) = P"#(�) + P""(�) =

Z 1

�1
dz Pval(�, z) ,(26)

with

P"#("")(�) =

Z 1

�1
dzP"#("")(�, z) . (27)

It should be pointed out that �(⇠) is the unpolarized
structure function, one can access in the deep inelastic
limit of the virtual photon absorption process, illus-
trated by diagram on the left side of Fig. ??. It is
an inclusive distribution and therefore one has to sum
over the whole set of final states.

IT IS UNCLEAR HOW TO CONNECT THIS RE-
MARKWITH THE ABOVEMATTER: The diagram
on the right side of Fig. ?? includes the final state in-
teraction, namely the one gluon exchange, from the
Wilson line, which is required for assuring the color
gauge invariance of the associated quark correlator
(see e.g. [17]). The contribution of the final state in-
teraction is necessary for non-vanishing T-odd TMDs
[18].

III. DECAY CONSTANT

A basic observable that one has to reproduce for
assessing a given approach is surely the pion decay
constant, f⇡. It is defined in terms of the BS ampli-
tude by (see, e.g., Ref. [19] for details)

i pµf⇡ = Nc

Z
d4k

(2⇡)4
Tr[ �µ �5 �(p, k)] , (28)

I moved these words below (11): where Nc is the num-
ber of colors. Contracting with pµ (p2 = M2) and
using the decomposition of BS amplitude given by
Eq. (5), one can perform the trace and obtain

iM2f⇡ = �4M Nc

Z
d4k

(2⇡)4
�2(k, p). (29)

It is worth noting that the decay constant is deter-
mined only by one component (even under the ex-
change 1 ! 2) of the BS amplitude.

By using LF variables, one can exploit Eq. (19) and
get

iM2f⇡ = �4 M Nc
1

2

Z
dk?
(2⇡)2

Z
dk+

2⇡
 2(�, z) =

= � ⇡M2

(2⇡)3
Nc

Z
d�

Z 1

�1

dz

2⇡
 2(�, z) =

= i
NcM

8⇡2

Z 1

0
d�

Z 1

�1
dz

Z 1

0
d�0

⇥ g2(�0, z)

[� + �0 +m2z2 + (1� z2)2 � i✏]2
. (30)
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FIG. 1. From top to bottom: anti-parallel, parallel and
total pion valence structure functions for di↵erent e↵ective
gluon masses and regulator parameter taken from Table I.

of the longitudinal distribution, and in the high mo-
mentum behavior of the transverse momentum dis-
tribution and form factor. These characteristics will
be evidenced when exploring in detail the momentum
distributions in the following subsections.

B. Longitudinal momentum distributions

The longitudinal momentum distribution �(⇠) as a
function of the quark momentum fraction ⇠, defined
by Eq. (27), and its antiparallel and parallel compo-
nents, are shown in Fig. 1 for several cases with pa-
rameters given in Table I. The values for the gluon
mass are taken between 28 MeV (µ/m = 0.15) and
638 MeV (µ/m = 2.5) and the form factor parameter

from 255 MeV (⇤/m = 1) to 430 MeV (⇤/m = 2).
For the figure the momentum distributions are nor-
malized such that their integration is 1, namely we
divided each one by the respective probability.

Fig. 1 shows that the decrease of e↵ective dimen-
sionless strength of the kernel, ↵̄s broadens the mo-
mentum distribution, independently of the variations
of the gluon mass and vertex parameter with 1 to 2.5
times the constituent quark mass. As �(⇠) and ⇠ are
dimensionless quantities, what matters are the dimen-
sionless ratio between the di↵erent quantities with a
strongly bound pion. For this set of parameters, even
with a very light gluon the valence distribution func-
tion, does not present dramatic variations, although
visible. In the figure we have chosen to present the
spin components of the valence distribution normal-
ized to their respective probabilities. Reminding that
the parallel component represents only about 10% of
the normalization.

Set f⇡/m ⌘"# ⌘"" ⌘

II 0.433 1.71 1.50 1.66

IV 0.477 1.61 1.42 1.57

VII 0.511 1.44 1.26 1.40

TABLE II. Exponent of the fit function (1�⇠)⌘ (⇠ ! 1) for
the antiparallel, parallel and total valence distributions.

The broadening of the momentum distribution is
reflected in a slower damping of the momentum dis-
tribution at the end points, as seen in Fig. 1, in di-
rect correspondence to an increasing f⇡/m ratio and
a valence state having the quark-antiquark pair more
likely closer to the pion center. The Table II illustrates
quantitatively, for a few examples, the correspondence
between the f⇡/m ratio and the exponent of the func-
tion (1 � x)⌘ fitted from the momentum distribution
close to the end point. The increase of the power ⌘
depletes the quark distribution in the UV region, im-
plying a suppression of configurations with the valence
quark and antiquark close together, and in relation to
a decrease of the f⇡/m ratio.

The parallel longitudinal momentum distribution is
broader than the antiparallel as can be verified in Fig.
1, presenting softer end-point behaviour with expo-
nents systematically smaller than the antiparallel ones
with ⌘"# � ⌘"" ⇠ 0.2, as displayed in Table II.

To close this subsection the results for the moments
of the valence longitudinal momentum distribution
function are shown in Table III, with the contribution
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3D Pion image on the null-plane

The probability distribution of the quarks inside the pion, on the light-front, is 
evaluated in the space given by the Cartesian product of the Ioffe-time and 
the plane spanned by the transverse coordinates.

Our goal is to use the configuration space in order to have a more 
detailed information of the space-time structure of the hadrons.

The Ioffe-time is useful for studying the relative importance of short 
and long light-like distances. It is defined as:

Miller & Brodsky, PRC 102, 022201 (2020)
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FIG. 8. 3D image of the probability density of the va-
lence quark-antiquark state in the pion as a function of the
rescaled longitudinal and transverse (bm) positions for the
antiparallel and parallel spin components.

We observe the enhancement of the probability den-
sity along the light-like distance vanishing, in both
spin components. This probability density has an os-
cillatory behaviour quite similar for both spin com-
ponents, which can be appreciated by the projection
shown in Fig. 9. The zeros in z̃ are roughly 2⇡, as
one could anticipate by looking to the explicit inte-
gral forms of �"# and �"", and the peak at z̃ at zero,
is already seen in the 3D plot of the density.
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components as a function of the rescaled longitudinal mo-
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R1
0

db ̃""(z̃, b).

VI. CONCLUSION

We studied the strongly bound pion valence light
front wave function and the associated momentum
distributions within a dynamical model, from the nu-
merical solution of the ladder Bethe-Salpeter equa-
tion in Minkowski space, resorting to the Nakanishi
integral representation and LF projection. The kernel
is simplified to a ladder approximation in the Feyn-
man gauge where constituent quarks interacts by an
e↵ective massive gluon exchange. An e↵ective quark-
gluon vertex function representing the extension of the
quark gluon coupling is introduced as a form factor
containing a single scale parameter. The quantitative
value of the e↵ective masses and form factor parame-
ter are inspired by Lattice QCD results and are of the
order of the infrared (IR) scale ⇤QCD. We tuned the
parameters around such scale to reproduce f⇡.

We computed both the dominant spin antiparallel
and parallel components of the valence wave func-
tion, which as expected reacts dynamically when the
model parameters are changed. We found that within
a good approximation the model results can be orga-
nized by the dimensionless ratio of f⇡ with the con-
stituent quark mass. For our choice of e↵ective gluon,
constituent quark mass and quark-gluon form factor
parameter, the occupation of the valence state in the
pion was found to be between 60 to 70%, even when
the e↵ective gluon mass changes from about 30 to 600
MeV. The scale parameter of the quark-gluon ver-
tex ranged from about 200 to 400 MeV, such vari-
ations kept the correlation of the valence wave func-
tion momentum distribution with f⇡/m, which is as-
sociated with the antiparallel wave function at the
origin. The probability of the spin antiparallel com-
ponent was found around 50% while the parallel one
about 10%. The pion model has an infinite number
of Fock-components built by a qq̄ pair and any arbi-
trary number of e↵ective gluons, which accounts for
the remaining 30% of probability. The enhancement
of the occupancy of the Fock components beyond the
valence state comes with by depleting the f⇡/m ra-
tio, which drains valence probability from the short
distances to populate higher Fock-states with higher
virtuality and in a more compact configuration. The
Mellin moments of the longitudinal momentum distri-
bution for the two spin components of the valence pion
wave function, also evolves in correspondence to the
f⇡/m ratio, and the average momentum fraction car-
ried by the quark-antiquark pair in the valence state
at the constituent quark model scale ranges from 0.66
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4 (as seen from Eq. 41) with �0 close
to 0 and z ⇠ 0, namely I Aadded the missing depen-
dence upon gamma’ and b�1/2 to F 0

0

F0(z ⇠ 0, �0 ⇠ 0, b)|b!1 =

= b�1/2F 0
0((z ⇠ 0, �0 ⇠ 0, b)|b!1 =

= b�1F1((z ⇠ 0, �0 ⇠ 0, b)|b!1 ⇠ e�b . (42)

I do not see the source of this term e
i
2 z̃ in F0, F 0

0 and
F1 and for the present I cut it.
Collecting the above results, it is convenient to write

the Fourier transform of the two spin components of
the valence wave function in terms of auxiliary am-
plitudes, where the leading asymptotic behaviour for
large b is factored out, i.e. notice the change of sign
in e�

i
2 z̃ according to what I wrote above Eq. (36)

 ̃"#(z̃, b) = e�be�
i
2 z̃�"#(z̃, b) ,

 ̃""(z̃, b) = e�be�
i
2 z̃�""(z̃, b) , (43)

where, recalling that z g3(�0, z) is even in z, one has
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0
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dz cos( zz̃2 )

⇥F1(z, �
0, b) g4(�

0, z) , (44)

Notice that �"# and �"" are symmetric by z̃ ! �z̃,
i.e. the inversion of the light-like axis.
We will provide results for the amplitudes �"#(z̃, b)

and �""(z̃, b), where the exponential fall-o↵ in b is fac-
tored out, instead of giving directly spin components
of the valence wave functions for the purpose of the
presentation.
Finally, we observe that the null-plane components

in Eq. (43) at z̃ = 0 can be directly obtained from
Euclidean space calculations, once we define two spin
components of the transverse amplitude as follows

'̃T
"#(b) =  ̃"#(0, b) and '̃T

""(b) =  ̃""(0, b) . (45)

These quantities come from the integration over
1
2 dk+dk� of the BS amplitude (leading to x+ =
x� = 0). Notably, given the analytic properties of

the NIR, an equal result can be obtained if one inte-
grates on ı dk0Edk

3, with k0E the Euclidean momentum
component (see Ref. [28] for the analytical details).
Thus, it could be of some interest to compare these
transverse functions obtained by direct calculations in
the Euclidean space the pion BS amplitude, and the
ones evaluated by solving the BSE in Minkowski space
through the NIR.

V. RESULTS

We solve the Bethe-Salpeter equation for a con-
stituent quark-antiquark model of the pion with one-
gluon exchange in the Feynman gauge. The solution
of the dynamical equation is done in the Minkowski
space resorting to the Nakanishi Integral Representa-
tion of the BS amplitude. After projection to the LF,
the set of coupled integral equations for the Nakanishi
weight functions (8) is solved numerically by using
a basis function expansion (for details see [2]). The
choice of parameters, namely the constituent quark
(m) and gluon (µ) e↵ective masses, and the cuto↵
(⇤), are made inspired by Lattice QCD results. In our
calculations of the pion structure we fit quark-gluon
coupling constant for a pion mass of 140 MeV for the
parameters given in Table I, and compute the valence
probability and decay constant. The last one is to be
compared to the Lattice QCD (LQCD) average value
of 130.2(1.7) MeV and the quoted experimental value
of

p
2f“exp”

⇡� =130.50(1)(3)(13) MeV [29]. We have
taken constituent quark masses from 187 to 255 MeV
in the calculations, and found a suitable set of pa-
rameters, which fits the pion decay constant close to
the quoted experimental value. For ⇤, we took val-
ues between m and 2m, chosen to be about ⇤QCD as
suggested in [6, 7], and the gluon masses ranging from
about 30 to 600 MeV.

A. Valence Probability: spin decomposition

In this study we present results for the valence prob-
ability, decay constant, transverse and longitudinal
momentum distribution of the pion wave function, and
3D image of the nucleon with the choice of parame-
ters provided in Table I. We start by showing results
for the valence probabilities and decay constant for
nine cases presented in Table I, where we explore the
variations of these quantities with the parameters of
the kernel. We have cases where Pval runs from 0.64
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in the target frame, when the DIS regime is reached,
the Io↵e-time measures the light-like distance between
the production of a quark pair by the virtual photon
and its interaction inside the hadron. Moreover, one
can quickly realizes that the Bjorken xBj , or better
the longitudinal fraction ⇠ = p+1 /p

+, is the variable
conjugated to the Io↵e-time, once the Fourier trans-
form of the matrix elements of em current correla-
tor is analyzed for obtaining DIS structure functions.
As suggested by phenomenological analyses (see, e.g.,
Refs. [26, 27]), one realizes that the Io↵e-time (also
indicated as the coherence length of the quark pair) is
/ 1/MxBj . This follows from the energy-time uncer-
tainty, involving the quark-pair o↵-shell energy and
the time interval between its production and interac-
tion with the hadronic medium, in the target frame.
Hence, longer and longer coherence lenghts pertain to
smaller and smaller values of xBj , making more and
more unlikely the interference between di↵erent dy-
namical regimes. This enforces the relevance of quan-
tities that depends upon the Io↵e-time, when we aim
at disentanling the di↵erent light-like distances that
the virtual photon probes, and eventually shedding
light on, e.g., higher Fock states production, onset of
the confinement, valence structure, etc.
In the previous Sect. II, the valence wave func-

tion, '2, has been introduced by considering its de-
pendence upon the momentum-space variables, i.e.
{⇠ = k+/p+,k?}. Of course, one can study the va-
lence amplitude also in the configuration space, where
the dependence results to be upon the coordinates
{z̃ = p+x�/2,b} [23] (one can recognize the co-
variant definition of the Io↵e-time, given above), The
Fourier transform of '2(⇠,k?,�i;M,J⇡, Jz) is given
by I am assuming that the FT is done by using the
phase exp � (k · x) and putting x+ = 0 in order to
have the plus sign in front of k? · b

'̃2(z̃,b,�i;M,J⇡, Jz) = p+
Z 1

0

d⇠

2⇡

Z
d2k?
(2⇡)2

⇥  (⇠,k?) e
�i⇠ z̃ eik?·b

= e�
i
2 z̃

Z 1

�1

dz

4⇡

Z
d2k?
(2⇡)2

 (⇠,k?)e
ik?·be

i
2 z z̃ (36)

where  (⇠,k?)'2(⇠,k?,�i;M,J⇡, Jz) and for x+ = 0,
the scalar product x · k reduces to x · k = x�k+/2 �
b? ·k? (in our convention). The decomposition of the
transverse-plane distances, allows one to separate the
components with di↵erent orbital angular momentum
on the null-plane and fixed number of constituents
????? otherwise we get in trouble with the LF ro-
tations in the transverse plane. This can be accom-

plished by recalling that

eix cos ✓ =
m=1X

m=�1
imJm(x)eim ✓ , (37)

where Jm(x) is the Bessel function of integer order.
Notice that the Fourier transform of the spin anti-
aligned and aligned components of the valence wave
function (cf Eq. (16)), are associated with integrals of
J0 and J1 respectively.

By adopting the NIR of the valence wave function,
one can readily obtain its expression in configuration
space. It is useful to take into account the follow-
ing integrals, suggested by Eqs. (19), (17) and (18).
The first one is (To avoid dangerous misleading I ex-
changed gamma with gamma’, in order to follow the
previous equations)

F0(z, �
0, b) =

Z 1

0
d�

J0(b
p
�)

� + �0 + 2 + z2M2

4

= 2K0

✓
b
q
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◆
, (38)

where Kn(x) is the modified Bessel function of the
second kind. The other required integrals are
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and
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4 ]2

= bK0
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b
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◆
. (40)

Notice that F0, F 0
0 and F1 depend upon z2, and this is

allows one to eliminate odd functions when integrating
on z in Eq. (36). The driving exponential fall-o↵ of
F0, F 0

0 and F1 in the asymptotic limit b ! 1 comes
from Km(x), which reads:

Km(x)|x!1 !
⇣ ⇡

2x

⌘ 1
2
e�x . (41)

Hence, the leading exponential behavior in the in-
tegrals (38), (39) and (40) comes from values of
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tion, '2, has been introduced by considering its de-
pendence upon the momentum-space variables, i.e.
{⇠ = k+/p+,k?}. Of course, one can study the va-
lence amplitude also in the configuration space, where
the dependence results to be upon the coordinates
{z̃ = p+x�/2,b} [23] (one can recognize the co-
variant definition of the Io↵e-time, given above), The
Fourier transform of '2(⇠,k?,�i;M,J⇡, Jz) is given
by I am assuming that the FT is done by using the
phase exp � (k · x) and putting x+ = 0 in order to
have the plus sign in front of k? · b

'̃2(z̃,b,�i;M,J⇡, Jz) = p+
Z 1

0

d⇠

2⇡

Z
d2k?
(2⇡)2

⇥  (⇠,k?) e
�i⇠ z̃ eik?·b

= e�
i
2 z̃

Z 1

�1

dz

4⇡

Z
d2k?
(2⇡)2

 (⇠,k?)e
ik?·be

i
2 z z̃ (36)

where  (⇠,k?)'2(⇠,k?,�i;M,J⇡, Jz) and for x+ = 0,
the scalar product x · k reduces to x · k = x�k+/2 �
b? ·k? (in our convention). The decomposition of the
transverse-plane distances, allows one to separate the
components with di↵erent orbital angular momentum
on the null-plane and fixed number of constituents
????? otherwise we get in trouble with the LF ro-
tations in the transverse plane. This can be accom-

plished by recalling that

eix cos ✓ =
m=1X

m=�1
imJm(x)eim ✓ , (37)

where Jm(x) is the Bessel function of integer order.
Notice that the Fourier transform of the spin anti-
aligned and aligned components of the valence wave
function (cf Eq. (16)), are associated with integrals of
J0 and J1 respectively.

By adopting the NIR of the valence wave function,
one can readily obtain its expression in configuration
space. It is useful to take into account the follow-
ing integrals, suggested by Eqs. (19), (17) and (18).
The first one is (To avoid dangerous misleading I ex-
changed gamma with gamma’, in order to follow the
previous equations)

F0(z, �
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Z 1

0
d�

J0(b
p
�)

� + �0 + 2 + z2M2

4

= 2K0

✓
b
q
�0 + 2 + z2M2

4

◆
, (38)

where Kn(x) is the modified Bessel function of the
second kind. The other required integrals are

F 0
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0, b) =

Z 1
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4 )2
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◆

q
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4

, (39)

and

F1(z, �
0, b) =

Z 1

0
d�

p
�J1(b

p
�)

[� + �0 + 2 + z2M2

4 ]2

= bK0

✓
b
q
�0 + 2 + z2M2

4

◆
. (40)

Notice that F0, F 0
0 and F1 depend upon z2, and this is

allows one to eliminate odd functions when integrating
on z in Eq. (36). The driving exponential fall-o↵ of
F0, F 0

0 and F1 in the asymptotic limit b ! 1 comes
from Km(x), which reads:

Km(x)|x!1 !
⇣ ⇡

2x

⌘ 1
2
e�x . (41)

Hence, the leading exponential behavior in the in-
tegrals (38), (39) and (40) comes from values of
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Figure 1: Right: Pion EM form factor and its valence contribution divided by the monopole form factor
Fmon(Q2) = 1/(1 + Q2/m2

⇢) versus Q2, compared with experimental data of Refs. [36, 37, 38, 39, 40, 41] for
the parameter sets III and VII. Left: Pion EM form factor and its valence contribution multiplied by Q2, as
functions of momentum transfer, compared with experimental data of Refs. [36, 37, 38, 39, 40, 41] for the
parameter sets III and VII. The result of the QCD asymptotic formula is also shown with the blue dot-dashed
line.

the asymptotic dominance. Additionally, we show in the right panel of the figure the form factor
and its valence contribution multiplied by Q

2, as functions of momentum transfer, compared
with the QCD asymptotic formula [43]

Q
2
Fasymp(Q

2) = 8⇡↵s(Q
2)f 2

⇡ , (23)

and it comes closer to the model results only around Q
2 ⇠ 100GeV2, and consistent with the

previous analysis of the valence dominance in the pion form factor.
The valence, nonvalence and total EM form factors are shown in Fig. 2, where it is appreci-

ated the faster decrease with momentum of the small higher Fock components of the LF pion
wave function. A higher Fock-component contribution to the form factor appears in the form of
valence state matrix elements of a two-body current operator [31, 32], which carries the virtual
propagation of the intermediate states and thus are short-ranged, being subleading at large
momentum transfers and reflected in the faster damping with respect to the dominant valence
contribution as momentum increases. In addition the ratio of the valence to the covariant form
factor is shown in the figure, and for Q2 ⇠ 100GeV2 exhausts about 95% of the full form factor,
and the di↵erence is appreciable ⇠ 30% below 30GeV2.

The contributions of the antiparallel and parallel spin components of the valence state to the
form factor is shown in the left panel of Fig. 3 . The probability of the parallel configuration
is only about 20% of the antiparallel one, which is seen at zero momentum transfer, and
by increasing Q

2 it turns to be subleading with respect to the dominant spin antiparallel
contribution. The zero in the parallel spin form factor is due to the orbital and spin coupling
factor as seen in (21), which flips the sign of this contribution around Q

2 ⇠ 8GeV2. In the right
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previous analysis of the valence dominance in the pion form factor.
The valence, nonvalence and total EM form factors are shown in Fig. 2, where it is appreci-

ated the faster decrease with momentum of the small higher Fock components of the LF pion
wave function. A higher Fock-component contribution to the form factor appears in the form of
valence state matrix elements of a two-body current operator [31, 32], which carries the virtual
propagation of the intermediate states and thus are short-ranged, being subleading at large
momentum transfers and reflected in the faster damping with respect to the dominant valence
contribution as momentum increases. In addition the ratio of the valence to the covariant form
factor is shown in the figure, and for Q2 ⇠ 100GeV2 exhausts about 95% of the full form factor,
and the di↵erence is appreciable ⇠ 30% below 30GeV2.
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[32] J. A. O. Marinho, T. Frederico, E. Pace, G. Salmè, P. Sauer, Light-front Ward-Takahashi Identity for Two-
Fermion Systems, Phys. Rev. D 77 (2008) 116010. arXiv:0805.0707, doi:10.1103/PhysRevD.77.116010.

[33] M. B. Parappilly, P. O. Bowman, U. M. Heller, D. B. Leinweber, A. G. Williams, J. B. Zhang, Scal-
ing behavior of quark propagator in full QCD, Phys. Rev. D 73 (2006) 054504. arXiv:hep-lat/0511007,
doi:10.1103/PhysRevD.73.054504.

[34] B. Ananthanarayan, I. Caprini, D. Das, Electromagnetic charge radius of the pion at high precision,
Physical review letters 119 (13) (2017) 132002.

[35] M. Tanabashi, et al., Review of Particle Physics, Phys. Rev. D 98 (3) (2018) 030001.
doi:10.1103/PhysRevD.98.030001.
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[36] R. Baldini, S. Dubnička, P. Gauzzi, S. Pacetti, E. Pasqualucci, Y. Srivastava, Nucleon time-like form factors
below the nn threshold, The European Physical Journal C-Particles and Fields 11 (4) (1999) 709–715.
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distribution, and in the high momentum behavior of the transverse momentum
distribution and form factor.

The pion form factor is a sum of the valence and nonvalence contributions,
corresponding to the higher Fock-components of the LF wave function as:

F⇡(Q
2) =

X

n

Fn(Q
2) = Fval(Q

2) + Fnval(Q
2) , (37)

where Fn(Q2) represents the contribution of the n�th Fock component of the
pion wave function to the form factor [31], Fval(Q2) is the valence contribution
having normalization Fval(0) = Pval and

Fnval(Q
2) =

X

n 6=val

Fn(Q
2) , (38)

where the higher Fock state contributions to the form factor are summed up
in the nonvalence form factor, with Fnval(0) = 1� Pval for its normalization.

For some particular cases, we computed the valence charge and nonvalence
radii as given in table 2. To obtain the nonvalence contribution to the pion
radius, namely the contribution of the higher Fock-components of the pion LF
wave function, we used that:

r2⇡ = Pval r
2
val + (1� Pval) r

2
nval , (39)

which follows from the decomposition given in Eq. (37) and the normalization
of the valence and nonvalence form factors. It is noteworthy that the higher
Fock components have a smaller size compared to the pion itself, namely
r⇡ = 0.661 fm compared to rnval = 0.537 fm, while the radius of the valence
component is rval = 0.709 fm, showing an extended valence quark charge dis-
tribution compared to the full pion state, while the higher Fock components of
the pion shows a more compact charge distribution of the quarks. The inter-
pretation is quite natural considering that the higher Fock components of the
pion composed by the two valence quarks and gluons have larger virtualities,
living less time and not allowing quarks to fly far from to the pion center,
making the charge distribution associated to these higher Fock components
more compact than the pion itself.

Table 2
Pion model with m⇡ = 138 MeV for di↵erent parameter sets, f⇡ in MeV, pion
charge radius, valence and novalence charge radii. The experimental pion charge

radius is 0.657± 0.003 fm [64] with r⇡ =
q
�6 d

dQ2F⇡(Q2)|Q2=0.

Set
p
2f⇡ (f⇡) r⇡ (fm) rval (fm) rnval (fm)

(IX) 130 (92) 0.661 0.709 0.537

We found that, the higher Fock components content of the LF pion wave
function is appreciable in this model. The ladder model has a infinite number
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distribution, and in the high momentum behavior of the transverse momentum
distribution and form factor.

The pion form factor is a sum of the valence and nonvalence contributions,
corresponding to the higher Fock-components of the LF wave function as:

F⇡(Q
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X

n

Fn(Q
2) = Fval(Q

2) + Fnval(Q
2) , (37)

where Fn(Q2) represents the contribution of the n�th Fock component of the
pion wave function to the form factor [31], Fval(Q2) is the valence contribution
having normalization Fval(0) = Pval and

Fnval(Q
2) =
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n 6=val
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2) , (38)

where the higher Fock state contributions to the form factor are summed up
in the nonvalence form factor, with Fnval(0) = 1� Pval for its normalization.

For some particular cases, we computed the valence charge and nonvalence
radii as given in table 2. To obtain the nonvalence contribution to the pion
radius, namely the contribution of the higher Fock-components of the pion LF
wave function, we used that:

r2⇡ = Pval r
2
val + (1� Pval) r

2
nval , (39)

which follows from the decomposition given in Eq. (37) and the normalization
of the valence and nonvalence form factors. It is noteworthy that the higher
Fock components have a smaller size compared to the pion itself, namely
r⇡ = 0.661 fm compared to rnval = 0.537 fm, while the radius of the valence
component is rval = 0.709 fm, showing an extended valence quark charge dis-
tribution compared to the full pion state, while the higher Fock components of
the pion shows a more compact charge distribution of the quarks. The inter-
pretation is quite natural considering that the higher Fock components of the
pion composed by the two valence quarks and gluons have larger virtualities,
living less time and not allowing quarks to fly far from to the pion center,
making the charge distribution associated to these higher Fock components
more compact than the pion itself.

Table 2
Pion model with m⇡ = 138 MeV for di↵erent parameter sets, f⇡ in MeV, pion
charge radius, valence and novalence charge radii. The experimental pion charge

radius is 0.657± 0.003 fm [64] with r⇡ =
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Set
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We found that, the higher Fock components content of the LF pion wave
function is appreciable in this model. The ladder model has a infinite number
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higher Fock-components à large virtualityà more compact

Valence

qq+gluons

Set m B/m µ/m ⇤/m f⇡/m Pval f⇡ r⇡ (fm) rval (fm) rnval (fm)
I 187 1.25 0.15 2 0.414 0.64 77 1.035 1.099 0.913
II 255 1.45 1.5 1 0.433 0.65 110 0.718 0.770 0.610
III 215 1.35 2 1 0.453 0.67 98 0.835 0.895 0.703
IV 255 1.45 2 1 0.459 0.66 117 0.699 0.750 0.586
V 255 1.45 2.5 1 0.477 0.68 122 0.687 0.736 0.570
VI 255 1.45 2.5 1.1 0.498 0.69 126 0.674 0.722 0.553
VII 255 1.45 2.5 1.2 0.511 0.70 130 0.663 0.710 0.538
VIII 215 1.35 1 2 0.520 0.71 112 0.782 0.836 0.632
IX 187 1.25 1 2 0.514 0.71 96 0.913 0.975 0.742

Table 1: Pion model with m⇡ = 140 MeV for various parameter sets, valence probability, f⇡ in MeV, pion charge
radius, valence and non-valence charge radii. The experimental pion charge radius is 0.657± 0.003 fm [34] with

r⇡ =
q

�6 d
dQ2F⇡(Q2)|Q2=0. The experimental value of f⇡ is 130.50± 0.017 MeV from [35].

which follows from the decomposition given in Eq. (13) and the normalization of the valence
and nonvalence form factors.

It is noteworthy that the higher Fock components have a smaller size compared to the
pion itself, namely r⇡ = 0.661 fm compared to rnval = 0.537 fm, while the radius of the valence
component is rval = 0.709 fm, showing an extended valence quark charge distribution compared
to the full pion state, while the higher Fock components of the pion shows a more compact
charge distribution of the quarks.

The interpretation is quite natural considering that the higher Fock components of the pion
composed by the two valence quarks and gluons have larger virtualities, living less time and not
allowing quarks to fly far from to the pion center, making the charge distribution associated to
these higher Fock components more compact than the pion itself.

Form-factor results. The pion EM form factor and its valence contribution divided by the
monopole form factor Fmon(Q2) = 1/(1 + Q

2
/m

2
⇢) is presented in Fig. 1 and compared with

experimental data of Refs. [36, 37, 38, 39, 40, 41]. We choose the parameter sets III and VII,
with f⇡ of 98 and 130 MeV, and valence probabilities of 0.67 and 0.70, respectively. It is well
known the strong correlation between f⇡ and the pion radius [42], and in the present model
once the parameters were fine tuned to reproduce f⇡ resulting in model VII, the form factor
at low momenta is well described together with the charge radius. The valence probability of
0.70 is the same as the normalization of the valence form factor, and for quite large momentum
the nonvalence contribution becomes subleading and dominated by the valence one, as it is
known. The dynamical model gives quantitatively that this happens above 80 GeV2. In Fig. 1
the results are compared with the ones of model III, with f⇡ being 30% below the experimental
value, with a larger charge radius in the same proportion. That is reflected in the larger
slope close to Q

2 = 0, despite such a di↵erence one can also observe that at 80 GeV2 of
momentum transfer it gives 90% of the form factor and being a good guess for the beginning of

8

Set m B/m µ/m ⇤/m f⇡/m Pval f⇡ r⇡ (fm) rval (fm) rnval (fm)
I 187 1.25 0.15 2 0.414 0.64 77 1.035 1.099 0.913
II 255 1.45 1.5 1 0.433 0.65 110 0.718 0.770 0.610
III 215 1.35 2 1 0.453 0.67 98 0.835 0.895 0.703
IV 255 1.45 2 1 0.459 0.66 117 0.699 0.750 0.586
V 255 1.45 2.5 1 0.477 0.68 122 0.687 0.736 0.570
VI 255 1.45 2.5 1.1 0.498 0.69 126 0.674 0.722 0.553
VII 255 1.45 2.5 1.2 0.511 0.70 130 0.663 0.710 0.538
VIII 215 1.35 1 2 0.520 0.71 112 0.782 0.836 0.632
IX 187 1.25 1 2 0.514 0.71 96 0.913 0.975 0.742

Table 1: Pion model with m⇡ = 140 MeV for various parameter sets, valence probability, f⇡ in MeV, pion charge
radius, valence and non-valence charge radii. The experimental pion charge radius is 0.657± 0.003 fm [34] with

r⇡ =
q

�6 d
dQ2F⇡(Q2)|Q2=0. The experimental value of f⇡ is 130.50± 0.017 MeV from [35].

which follows from the decomposition given in Eq. (13) and the normalization of the valence
and nonvalence form factors.

It is noteworthy that the higher Fock components have a smaller size compared to the
pion itself, namely r⇡ = 0.661 fm compared to rnval = 0.537 fm, while the radius of the valence
component is rval = 0.709 fm, showing an extended valence quark charge distribution compared
to the full pion state, while the higher Fock components of the pion shows a more compact
charge distribution of the quarks.

The interpretation is quite natural considering that the higher Fock components of the pion
composed by the two valence quarks and gluons have larger virtualities, living less time and not
allowing quarks to fly far from to the pion center, making the charge distribution associated to
these higher Fock components more compact than the pion itself.

Form-factor results. The pion EM form factor and its valence contribution divided by the
monopole form factor Fmon(Q2) = 1/(1 + Q

2
/m

2
⇢) is presented in Fig. 1 and compared with

experimental data of Refs. [36, 37, 38, 39, 40, 41]. We choose the parameter sets III and VII,
with f⇡ of 98 and 130 MeV, and valence probabilities of 0.67 and 0.70, respectively. It is well
known the strong correlation between f⇡ and the pion radius [42], and in the present model
once the parameters were fine tuned to reproduce f⇡ resulting in model VII, the form factor
at low momenta is well described together with the charge radius. The valence probability of
0.70 is the same as the normalization of the valence form factor, and for quite large momentum
the nonvalence contribution becomes subleading and dominated by the valence one, as it is
known. The dynamical model gives quantitatively that this happens above 80 GeV2. In Fig. 1
the results are compared with the ones of model III, with f⇡ being 30% below the experimental
value, with a larger charge radius in the same proportion. That is reflected in the larger
slope close to Q

2 = 0, despite such a di↵erence one can also observe that at 80 GeV2 of
momentum transfer it gives 90% of the form factor and being a good guess for the beginning of

8

Decomposition of  the pion EM form factor



4

0 0.25 0.5 0.75 1
 ξ

0

0.5

1

1.5

2

u(
 ξ

)

FIG. 1. (Color online). Pion parton distribution function.
Solid line: full calculation from Eqs. (7) and (8), by us-
ing the solution of the BSE, evaluated through the NIR
approach and adopting the values of the three input pa-
rameters m = 255 MeV, µ = 637.5 MeV and ⇤ = 306
MeV (see Ref. [11]). Dashed line: LF valence contribu-
tion, from the valence component of the Fock expansion
of the pion state, Eq. (9) (see Ref. [11]).

quark pair contribute to the valence PDF with di↵er-
ent probabilities: P"# = 0.57 and P"" = 0.13, so that
one remarkably finds a weight of ⇠ 25% from purely
relativistic e↵ects carried by the aligned component
(see Ref. [11] for more details). Finally, at the initial
scale, the exponent of (1� ⇠)⌘0 for ⇠ ! 1 for the full
PDF is ⌘0 = 1.4. An ECLO evolution, as given in Ref.
[5], has been applied to the PDFs in Fig. 1 in order
to compare our results to the E615 data [32] (mea-
sured in Drell-Yan processes), and also taking into
account the reanalysis carried out in both Ref. [34],
where the scale 4.0 GeV of the original experimental
data was suggested to be moved to Q = 5.2 GeV, and
Ref. [33], where resummation e↵ects on the extraction
of the pion PDF were proposed. In particular, Fig. 2
shows the comparison between i) the theoretical cal-
culations, full PDF and valence contribution, evolved
to Q = 5.2 GeV, ii) the data originally delivered by
the E615 Collaboration (assigned scale 4.0 GeV) and
iii) the experimental data rescaled, at each ⇠, by the
ratio between the fit 3 in Ref. [33], properly evolved
to 5.2 GeV, and the E615 experimental data. Note-
worthy, the calculations in Ref. [33] have illustrated
at which extent the PDF extraction from the experi-
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FIG. 2. (Color online). The distribution function ⇠ u(⇠)
in a pion. Solid line: full calculation (see Eqs. (7) and
(8)), obtained from the BS amplitude solution of the BSE
with m = 255 MeV, µ = 637.5 MeV and ⇤ = 306 MeV,
and evolved from the initial scale Q0 = 0.360 GeV to Q =
5.2 GeV (see text). Dashed line: the evolved LF valence
component, Eq. (9). Full dots: experimental data from
Ref. [32]. Full squares: reanalyzed data by using the ratio
between the fit 3 of Ref. [33], evolved to 5.2 GeV, and
the experimental data [32], at each data point, so that the
resummation e↵ects (see text) are accounted for.

mental measurements is a↵ected by the resummation
of the large logarithmic contributions in the partonic
hard-scattering cross sections. It should be pointed
out that the behavior of the evolved ⇠ u(⇠) for ⇠ ! 1 is
given by (1�⇠)⌘5 with ⌘5 = 2.94 (with ⇠ 2 [0.9, 1]), to
be compared, e.g., to the value 2.20±0.64 obtained by
using recent LQCD calculations [10], where the PDF
is reconstructed via Mellin moments, as well as the
exponent 2.81 ± 0.08 reported in Ref. [5]. The low-
order Mellin moments for two scales, Q = 2.0 GeV and
5.2 GeV, obtained from our pion PDF (after properly
evolving through ECLO) and from the most recent
LQCD results (with m⇡ = 260 MeV) [10, 35] are
presented in Table I.

Finally, in Fig. 3, the comparison is carried out
with some recent theoretical outcomes obtained from
di↵erent frameworks. The so-called continuum-QCD,
based on the Dyson-Schwinger equation and the BSE,
is able to yield the PDF, via Mellin moments evalu-
ated in Euclidean space. In particular, we compare
with the results presented i) in Ref. [5], where the
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2

b�⌫(q) = C �⌫(q) C�1, where C = i�2�0 is the charge-
conjugation operator. In Eq. (1), the fermion prop-
agator, the gluon propagator in the Feynman gauge
and the extended quark-gluon vertex (dressed through
a simple form factor) are

S(p) =
i

/p�m+ i✏
, Sµ⌫(q) = �i

gµ⌫

q2 � µ2 + i✏
,

�µ = ig
µ2 � ⇤2

q2 � ⇤2 + i✏
�µ , (2)

where g is the coupling constant, m the fermionic
mass, µ the exchanged-boson mass and ⇤ a scale pa-
rameter, introduced for modeling the color distribu-
tion at the interaction vertex. Noteworthy, the one-
gluon exchange should be a viable approximation ac-
cording to Ref. [17], where the non-planar diagrams
were found largely Nc suppressed in bosonic bound
states (with an estimate of their contribution to dy-
namical observables less than 5% for Nc = 3, even
for large binding).
The BS amplitude for a 0� system reads

�(k;P ) = S1(k;P )�1(k;P ) + S2(k;P )�2(k;P )

+ S3(k;P )�3(k;P ) + S4(k;P )�4(k;P ) , (3)

where the �i’s are scalar functions, and Si’s are Dirac
structures given by [18, 19]

S1(k;P ) = �5, S2(k;P ) =
/P

M
�5,

S3(k;P ) =
k · P
M3

/P�5 �
1

M
/k�5,

S4(k;P ) =
i

M2
�µ⌫Pµk⌫�5 . (4)

The anti-commutation rules of the fermionic fields im-
pose that the functions �i are even for i = 1, 2, 4, un-
der the change k ! �k, and odd for i = 3.

The scalar functions �i(k;P ) in (3) can be written
in terms of the NIR as follows

�i(k;P ) =

Z 1

�1
dz0

Z 1

0
d�0

⇥ gi(�0, z0;2)

[k2 + z0(P · k)� �0 � 2 + i✏]3
, (5)

where 2 = m2 � M2/4, and gi(�0, z0;2) are the
Nakanishi weight functions (NWFs), that are real and
assumed to be unique, following the uniqueness the-
orem from Ref. [13]. Remarkably, all the dynamical
information one is able to include in the BS interac-
tion kernel are non perturbatively embedded in the
NWFs, once the suitable integral equation is solved.

By inserting Eqs. (3) and (5) in the BSE, Eq. (1),
and then applying a LF projection, i.e. integrat-
ing over k� = k0 � k3 , one can formally trans-
form the BSE into a coupled system of integral equa-
tions for the NWFs (see details in Ref. [15]), that
eventually becomes a generalized eigenvalue prob-
lem (GEVP). To carry out the numerical evaluation,
the range of variability of the constituent quark and
gluon e↵ective masses, as well as the scale parameter
⇤ ⇠ ⇤QCD have been chosen as suggested by LQCD
results (see, e.g., Refs. [20–22]), as discussed in de-
tail in Ref. [11]. In particular, by using i) m = 255
MeV, ii) µ = 637.5 MeV and iii) ⇤ = 306 MeV
(the three values correspond to the set VIII in [11]),
one is able to reproduce the pion mass M = 140
MeV and the PDG estimation of the decay constant
fPDG
⇡� =130.50(1)(3)(13) MeV [23]. Also the coupling
constant g in the interaction vertex (see Eq. (2)) is an
outcome of the GEVP, that yields g2/(4⇡) = 6.482.
This value is in a acceptable (factor ⇠ 2) agreement
with ↵s/⇡ in the IR domain, presented in the wide
analysis of Ref. [6].

The parton distribution function. Once the NWFs
are numerically calculated, one obtains the full BS
amplitude through Eqs. (5) and (3). After perform-
ing the normalization in the standard way [24] (see
also Refs. [11, 12]), one proceeds to evaluate the pion
PDF. The starting point is the unpolarized transverse-
momentum distribution (uTMD), that reads in the
frame P? = 0 and adopting the light-cone gauge
A+

g = 0 (see, e.g., Refs. [25, 26])

f1(�, ⇠) =
Nc

4

Z
d�k̂?

Z
dz�dz?
2(2⇡)3

ei[⇠P
+z�/2�k?·z?]

⇥ hP | ̄q(�
1

2
z)�+ q(

1

2
z)|P i

��
z+=0

=
Nc

4

Z
d�k̂?

Z
dp�q
2(2⇡)

Z
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where � = |k?|2, ⇠ = p+q /P
+ = (k+ + P+/2)/P+.

The uTMD is normalized to 1 given the normalization
of the pion state (see Ref. [27]). Then the PDF is
nothing else the integral over � of the uTMD. i.e.

u(⇠) =
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d� f1(�, ⇠). (7)

By assuming the charge symmetry (see, e.g., Ref. [28])
and adopting the Mandelstam framework [16] (see also
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b�⌫(q) = C �⌫(q) C�1, where C = i�2�0 is the charge-
conjugation operator. In Eq. (1), the fermion prop-
agator, the gluon propagator in the Feynman gauge
and the extended quark-gluon vertex (dressed through
a simple form factor) are

S(p) =
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�µ , (2)

where g is the coupling constant, m the fermionic
mass, µ the exchanged-boson mass and ⇤ a scale pa-
rameter, introduced for modeling the color distribu-
tion at the interaction vertex. Noteworthy, the one-
gluon exchange should be a viable approximation ac-
cording to Ref. [17], where the non-planar diagrams
were found largely Nc suppressed in bosonic bound
states (with an estimate of their contribution to dy-
namical observables less than 5% for Nc = 3, even
for large binding).
The BS amplitude for a 0� system reads

�(k;P ) = S1(k;P )�1(k;P ) + S2(k;P )�2(k;P )

+ S3(k;P )�3(k;P ) + S4(k;P )�4(k;P ) , (3)

where the �i’s are scalar functions, and Si’s are Dirac
structures given by [18, 19]
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The anti-commutation rules of the fermionic fields im-
pose that the functions �i are even for i = 1, 2, 4, un-
der the change k ! �k, and odd for i = 3.

The scalar functions �i(k;P ) in (3) can be written
in terms of the NIR as follows
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where 2 = m2 � M2/4, and gi(�0, z0;2) are the
Nakanishi weight functions (NWFs), that are real and
assumed to be unique, following the uniqueness the-
orem from Ref. [13]. Remarkably, all the dynamical
information one is able to include in the BS interac-
tion kernel are non perturbatively embedded in the
NWFs, once the suitable integral equation is solved.

By inserting Eqs. (3) and (5) in the BSE, Eq. (1),
and then applying a LF projection, i.e. integrat-
ing over k� = k0 � k3 , one can formally trans-
form the BSE into a coupled system of integral equa-
tions for the NWFs (see details in Ref. [15]), that
eventually becomes a generalized eigenvalue prob-
lem (GEVP). To carry out the numerical evaluation,
the range of variability of the constituent quark and
gluon e↵ective masses, as well as the scale parameter
⇤ ⇠ ⇤QCD have been chosen as suggested by LQCD
results (see, e.g., Refs. [20–22]), as discussed in de-
tail in Ref. [11]. In particular, by using i) m = 255
MeV, ii) µ = 637.5 MeV and iii) ⇤ = 306 MeV
(the three values correspond to the set VIII in [11]),
one is able to reproduce the pion mass M = 140
MeV and the PDG estimation of the decay constant
fPDG
⇡� =130.50(1)(3)(13) MeV [23]. Also the coupling
constant g in the interaction vertex (see Eq. (2)) is an
outcome of the GEVP, that yields g2/(4⇡) = 6.482.
This value is in a acceptable (factor ⇠ 2) agreement
with ↵s/⇡ in the IR domain, presented in the wide
analysis of Ref. [6].

The parton distribution function. Once the NWFs
are numerically calculated, one obtains the full BS
amplitude through Eqs. (5) and (3). After perform-
ing the normalization in the standard way [24] (see
also Refs. [11, 12]), one proceeds to evaluate the pion
PDF. The starting point is the unpolarized transverse-
momentum distribution (uTMD), that reads in the
frame P? = 0 and adopting the light-cone gauge
A+

g = 0 (see, e.g., Refs. [25, 26])
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The uTMD is normalized to 1 given the normalization
of the pion state (see Ref. [27]). Then the PDF is
nothing else the integral over � of the uTMD. i.e.
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By assuming the charge symmetry (see, e.g., Ref. [28])
and adopting the Mandelstam framework [16] (see also
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Ref. [12] for the pion electromagnetic form factor),
that heuristically amounts to use a dressed quark-pion
vertex (related to the BS amplitude after multiplying
by the fermion propagators), the expression for the
uTMD is given by (see Ref. [27])
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Notice that f1 in Eq. (8) is automatically normal-
ized to 1, once the BS amplitude is normalized (cfr.
Refs. [11] and [24]), and that the explicit expression
of Eq. (8) in terms of the NWFS is given in Ref. [27].
In summary, our calculation of the PDF is carried

out by using in Eq. (7) the result of Eq. (8) with the
BS amplitude evaluated through Eqs. (5) and (3). The
di↵erent gauges in Eq. (6) and in the BSE kernel (at
the present stage) raises the question of the relevance
of the Wilson line in Eq. (6), that reduces to the iden-
tity in the light-cone gauge. The non trivial challenge
of adopting a gluon propagator in the light-cone gauge
will be faced with elsewhere, but one could reliably
surmise a small e↵ect after comparing our result with
the one in Ref. [7], where a Landau gauge has been
adopted (see Fig. 3 for comparison, modulo the very
sharp di↵erences in the approaches).
Beside the full PDF, for a more deep analysis we

have calculated the LF valence contribution. Within
the LF quantum-field theory illustrated in Refs. [29,
30], one defines the creation and annihilation oper-
ators for particles and antiparticles, with arbitrary
spin, onto the null-plane. Then, the generic LF Fock
state is built and, assuming a tiny mass for the gluon,
one can meaningfully expand the hadron wave func-
tion (WF) by using the complete Fock basis and diag-
onalize the LF Hamiltonian (see Ref. [31]). The state
with the smallest number of constituents (or with the
lowest number of creation operators applied to the
vacuum) is the valence one, and we call LF valence
WF the corresponding amplitude. Notice that in the
literature (see, e.g., Ref. [5] where a detailed analysis
of the issue is presented and a wealth of related refer-
ences are given) a di↵erent terminology is adopted,
by indicating as valence WF the full LF-projected

BS amplitude, emphasizing in this way the number
of fermionic fields, dressed by QCD interactions, that
are present in the definition of the BS amplitude itself.

The Fock expansion of the pion state is a very useful
tool, since one can recover a probabilistic framework,
inapplicable to the BS amplitude. In fact, summing
up the square modulus of each amplitude present in
the Fock expansion, we obtain 1, if the pion state is
normalized. With this in mind, one can write the
contribution to the PDF from the LF-valence WF as
follows (see details in Ref. [11])

uval(⇠) =
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h
| "#(�, z)|2+ | ""(�, z)|2

i
, (9)

where z = 1� 2⇠,  "#(�, z) is the anti-aligned compo-
nent of the LF-valence WF and  ""(�, z) the aligned
one (of purely relativistic nature). The probability of
the LF-valence WF reads

Pval =
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�1
dz

Z 1

0

d�

(4⇡)2

h
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In the actual calculation, for the set of three param-
eters we used, one has Pval = 0.7 [11]. The obtained
value of Pval indicates that 30% of the normalization
comes from states that contain one, two, ... infinite
gluons (given by the iteration of the ladder kernel).

Results. The full PDF and its LF-valence contri-
bution, obtained from the BSE evaluated through the
NIR approach and adopting the previously mentioned
input parameters, are shown in Fig. 1, at the initial
scale Q0 = 360 MeV. This key value for Q0 is fixed in
agreement to the analysis of the running coupling that
allows us to assign a hadronic scale from the inflection
point of the QCD e↵ective charge as a function of Q2

(see Refs. [5], where Q0 = 0.330 ± 0.030 GeV was
adopted, and also [6]).

Some comments on the results in Fig. 1 are in or-
der: i) the symmetry of the PDFs, with respect to
⇠ = 0.5, is entailed by the charge symmetry, that in
turn leads to the expression of the uTDM in the Man-
delstam approach given by Eq. (8); ii) for ⇠ ! 1,
the amplitude of the lowest Fock state generates a
contribution that completely saturates u(⇠); iii) while
the full PDF is normalized to 1, as it necessarily fol-
lows from the standard normalization of the BS am-
plitude [11, 24], the valence contribution has norm
Pval = 0.7; iv) the 30% depletion is due to the pres-
ence of the higher Fock-components in the pion state.
Let us remind that the two spin configurations of the
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the full PDF is normalized to 1, as it necessarily fol-
lows from the standard normalization of the BS am-
plitude [11, 24], the valence contribution has norm
Pval = 0.7; iv) the 30% depletion is due to the pres-
ence of the higher Fock-components in the pion state.
Let us remind that the two spin configurations of the

3

Ref. [12] for the pion electromagnetic form factor),
that heuristically amounts to use a dressed quark-pion
vertex (related to the BS amplitude after multiplying
by the fermion propagators), the expression for the
uTMD is given by (see Ref. [27])
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Notice that f1 in Eq. (8) is automatically normal-
ized to 1, once the BS amplitude is normalized (cfr.
Refs. [11] and [24]), and that the explicit expression
of Eq. (8) in terms of the NWFS is given in Ref. [27].
In summary, our calculation of the PDF is carried

out by using in Eq. (7) the result of Eq. (8) with the
BS amplitude evaluated through Eqs. (5) and (3). The
di↵erent gauges in Eq. (6) and in the BSE kernel (at
the present stage) raises the question of the relevance
of the Wilson line in Eq. (6), that reduces to the iden-
tity in the light-cone gauge. The non trivial challenge
of adopting a gluon propagator in the light-cone gauge
will be faced with elsewhere, but one could reliably
surmise a small e↵ect after comparing our result with
the one in Ref. [7], where a Landau gauge has been
adopted (see Fig. 3 for comparison, modulo the very
sharp di↵erences in the approaches).
Beside the full PDF, for a more deep analysis we

have calculated the LF valence contribution. Within
the LF quantum-field theory illustrated in Refs. [29,
30], one defines the creation and annihilation oper-
ators for particles and antiparticles, with arbitrary
spin, onto the null-plane. Then, the generic LF Fock
state is built and, assuming a tiny mass for the gluon,
one can meaningfully expand the hadron wave func-
tion (WF) by using the complete Fock basis and diag-
onalize the LF Hamiltonian (see Ref. [31]). The state
with the smallest number of constituents (or with the
lowest number of creation operators applied to the
vacuum) is the valence one, and we call LF valence
WF the corresponding amplitude. Notice that in the
literature (see, e.g., Ref. [5] where a detailed analysis
of the issue is presented and a wealth of related refer-
ences are given) a di↵erent terminology is adopted,
by indicating as valence WF the full LF-projected

BS amplitude, emphasizing in this way the number
of fermionic fields, dressed by QCD interactions, that
are present in the definition of the BS amplitude itself.

The Fock expansion of the pion state is a very useful
tool, since one can recover a probabilistic framework,
inapplicable to the BS amplitude. In fact, summing
up the square modulus of each amplitude present in
the Fock expansion, we obtain 1, if the pion state is
normalized. With this in mind, one can write the
contribution to the PDF from the LF-valence WF as
follows (see details in Ref. [11])
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In the actual calculation, for the set of three param-
eters we used, one has Pval = 0.7 [11]. The obtained
value of Pval indicates that 30% of the normalization
comes from states that contain one, two, ... infinite
gluons (given by the iteration of the ladder kernel).

Results. The full PDF and its LF-valence contri-
bution, obtained from the BSE evaluated through the
NIR approach and adopting the previously mentioned
input parameters, are shown in Fig. 1, at the initial
scale Q0 = 360 MeV. This key value for Q0 is fixed in
agreement to the analysis of the running coupling that
allows us to assign a hadronic scale from the inflection
point of the QCD e↵ective charge as a function of Q2

(see Refs. [5], where Q0 = 0.330 ± 0.030 GeV was
adopted, and also [6]).
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gluons (given by the iteration of the ladder kernel).
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bution, obtained from the BSE evaluated through the
NIR approach and adopting the previously mentioned
input parameters, are shown in Fig. 1, at the initial
scale Q0 = 360 MeV. This key value for Q0 is fixed in
agreement to the analysis of the running coupling that
allows us to assign a hadronic scale from the inflection
point of the QCD e↵ective charge as a function of Q2
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der: i) the symmetry of the PDFs, with respect to
⇠ = 0.5, is entailed by the charge symmetry, that in
turn leads to the expression of the uTDM in the Man-
delstam approach given by Eq. (8); ii) for ⇠ ! 1,
the amplitude of the lowest Fock state generates a
contribution that completely saturates u(⇠); iii) while
the full PDF is normalized to 1, as it necessarily fol-
lows from the standard normalization of the BS am-
plitude [11, 24], the valence contribution has norm
Pval = 0.7; iv) the 30% depletion is due to the pres-
ence of the higher Fock-components in the pion state.
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The parton distribution of the pion is obtained for the first time from the solution of a dynamical
equation in Minkowski space. The adopted equation is the homogeneous Bethe-Salpeter one with
a ladder kernel, described in terms of i) constituent quarks and gluons degrees of freedom, and
ii) an extended quark-gluon vertex. The masses of quark and gluon as well as the interaction-
vertex scale have been chosen in a range suggested by lattice QCD calculations, and calibrated to
reproduce both pion mass and decay constant. Beside the full parton distribution, we have also
calculated the contribution from the light-front valence wave function, corresponding to the lowest
Fock component in the expansion of the pion state. After applying an evolution with an e↵ective
charge and a LO splitting function, a detailed and inspiring comparison with both the extracted
experimental data ( with and without resummation e↵ects) and other recent calculations obtained in
di↵erent frameworks is presented. Interestingly, in a wide region of longitudinal-momentum fraction,
the parton distribution function receives sizable contributions from the higher Fock-components of
the pion state at the initial scale, while approaching the tail the light-front valence component
dominates, as expected. Moreover, an exponent ⇠ 3 is found suitable for describing the tail at the
scale 5.2 GeV.

The pion is a cornerstone for understanding the
visible mass of the universe within Quantum Chro-
modynamics (QCD), being the pivotal Goldstone bo-
son state associated with the dynamical mass gen-
eration (see, e.g., Ref. [1]). Dedicated experimen-
tal e↵orts are planned in the close future for inves-
tigating in detail the pion, and eventually to recon-
struct its 3D image in Minkowski space, by means of
high-luminosity facilities, like the Electron Ion Col-
lider (EIC) in USA [2], as well the EICc in China [3].
In the perspective to explore dynamical models incor-
porating non perturbative features of QCD and thus
able to gain a reliable description of hadrons on the
light-cone, in this letter we present a calculation of the
parton distribution function (PDF) of the pion and
its light-front (LF) valence component, using for the
first time a 0� solution of the Bethe-Salpeter equation
(BSE) [4] in Minkowski space. After properly apply-
ing an evolution with an e↵ective charge and a LO
splitting function (ECLO), namely the suggestion pro-
posed in Ref. [5] (see also Ref. [6] for a detailed anal-
ysis of the QCD running coupling), comparisons with
data and outcomes from other recent calculations, like
continuum QCD [7, 8], basis light-front quantization
(BLFQ) [9] and lattice QCD (LQCD) [10] are illus-
trated. It is worth noticing that within our approach,
from the comparison between the full PDF and the
LF-valence contribution (see below) one can quanti-

tatively assess the phenomenological relevance of the
higher-Fock components of the pion state.

In order to achieve our goal, we adopt the frame-
work already successfully applied to both a 3D inves-
tigation of the pion [11] onto the null-plane and the
electromagnetic form factor [12] (in a very nice agree-
ment with the data and including also the asymptotic
region). Besides ingredients genuinely belonging to
the quantum-field theory realm, we use i) the Nakan-
ishi integral representation (NIR) [13] of the Bethe-
Salpeter (BS) amplitude (see, e.g., Refs [14, 15] for
a general introduction to the fermionic case) for ob-
taining solutions of the Minkowskian BSE, and ii) a
formalism á la Mandelstam [16] for describing the in-
teraction between a virtual photon and a bound sys-
tem, and eventually calculating the PDF.

In ladder approximation, the bound-state BS am-
plitude, �(k;P ), fulfills the following homogeneous in-
tegral equation

�(k;P ) = S
�
k + P

2

� Z d4k0

(2⇡)4
Sµ⌫(q)�µ(q)

⇥ �(k0;P )b�⌫(q)S
�
k � P

2

�
, (1)

where P is the pion 4-momentum, with P 2 = M2,
k = (pq � pq̄)/2 the relative 4-momentum, with pq(q̄)
the o↵-shell (anti-) quark momentum, and q = k� k0.
The quark-gluon vertex, �⌫(q), is related to b�⌫(q) by
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Parton distribution function
WP, Ydrefors, Nogueira, Frederico and Salme PRD 105 L071505 (2022).

Low order Mellin moments at scales Q = 2.0 GeV and Q = 5.2 GeV.

LQCD, Q = 2.0 GeV: hxi - Alexandrou et al PRD 103, 014508 (2021)

hx2i and hx3i - Alexandrou et al PRD 104, 054504 (2021)

LQCD, Q = 5.0 GeV: hxi - Alexandrou et al PRD 103, 014508 (2021)

Hadronic scale and e↵ective charge for DGLAP
Q0 = 0.330± 0.030 GeV - Cui et al EPJC 2020 80 1064

Within the error, we choose Q0 = 0.360 GeV to fit the first Mellin moment.

We used lowest order DGLAP equations for evolution

Tobias Frederico (ITA) Pion from Minkowski space dynamics 13 / 23
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Parton distribution function

WP, Ydrefors, Nogueira, Frederico and Salmè PRD 105, L071505 (2022).

Comparison with other theoretical calculations
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 ξ
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Solid line: full calculation of the BSE evolved

from the initial scale Q0 = 0.360 GeV to Q = 5.2 GeV

Dashed line: DSE calculation (Cui et al )

Dash-dotted line: DSE calculation with dressed quark-photon vertex

from Bednar et al PRL 124, 042002 (2020)

Dotted line: BLFQ colaboration, PLB 825, 136890 (2022)

Gray area: LQCD results from C. Alexandrou et al (2021)

It is in agreement with PQCD, exponent greater than 2

Evolved ⇠ u(⇠) , for ⇠ ! 1, the exponent of (1� ⇠)⌘5 is ⌘5 = 2.94

LQCD: Alexandrou et al PRD 104, 054504 (2021) obtained 2.20± 0.64

Cuit et al EPJA 58, 10 (2022) obtained 2.81± 0.08
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FIG. 1. (Color online). Pion parton distribution function.
Solid line: full calculation from Eqs. (7) and (8), by us-
ing the solution of the BSE, evaluated through the NIR
approach and adopting the values of the three input pa-
rameters m = 255 MeV, µ = 637.5 MeV and ⇤ = 306
MeV (see Ref. [11]). Dashed line: LF valence contribu-
tion, from the valence component of the Fock expansion
of the pion state, Eq. (9) (see Ref. [11]).

quark pair contribute to the valence PDF with di↵er-
ent probabilities: P"# = 0.57 and P"" = 0.13, so that
one remarkably finds a weight of ⇠ 25% from purely
relativistic e↵ects carried by the aligned component
(see Ref. [11] for more details). Finally, at the initial
scale, the exponent of (1� ⇠)⌘0 for ⇠ ! 1 for the full
PDF is ⌘0 = 1.4. An ECLO evolution, as given in Ref.
[5], has been applied to the PDFs in Fig. 1 in order
to compare our results to the E615 data [32] (mea-
sured in Drell-Yan processes), and also taking into
account the reanalysis carried out in both Ref. [34],
where the scale 4.0 GeV of the original experimental
data was suggested to be moved to Q = 5.2 GeV, and
Ref. [33], where resummation e↵ects on the extraction
of the pion PDF were proposed. In particular, Fig. 2
shows the comparison between i) the theoretical cal-
culations, full PDF and valence contribution, evolved
to Q = 5.2 GeV, ii) the data originally delivered by
the E615 Collaboration (assigned scale 4.0 GeV) and
iii) the experimental data rescaled, at each ⇠, by the
ratio between the fit 3 in Ref. [33], properly evolved
to 5.2 GeV, and the E615 experimental data. Note-
worthy, the calculations in Ref. [33] have illustrated
at which extent the PDF extraction from the experi-

0 0.25 0.5 0.75 1
 ξ

0

0.1

0.2

0.3

0.4

0.5
 ξ

u(
 ξ

)

FIG. 2. (Color online). The distribution function ⇠ u(⇠)
in a pion. Solid line: full calculation (see Eqs. (7) and
(8)), obtained from the BS amplitude solution of the BSE
with m = 255 MeV, µ = 637.5 MeV and ⇤ = 306 MeV,
and evolved from the initial scale Q0 = 0.360 GeV to Q =
5.2 GeV (see text). Dashed line: the evolved LF valence
component, Eq. (9). Full dots: experimental data from
Ref. [32]. Full squares: reanalyzed data by using the ratio
between the fit 3 of Ref. [33], evolved to 5.2 GeV, and
the experimental data [32], at each data point, so that the
resummation e↵ects (see text) are accounted for.

mental measurements is a↵ected by the resummation
of the large logarithmic contributions in the partonic
hard-scattering cross sections. It should be pointed
out that the behavior of the evolved ⇠ u(⇠) for ⇠ ! 1 is
given by (1�⇠)⌘5 with ⌘5 = 2.94 (with ⇠ 2 [0.9, 1]), to
be compared, e.g., to the value 2.20±0.64 obtained by
using recent LQCD calculations [10], where the PDF
is reconstructed via Mellin moments, as well as the
exponent 2.81 ± 0.08 reported in Ref. [5]. The low-
order Mellin moments for two scales, Q = 2.0 GeV and
5.2 GeV, obtained from our pion PDF (after properly
evolving through ECLO) and from the most recent
LQCD results (with m⇡ = 260 MeV) [10, 35] are
presented in Table I.

Finally, in Fig. 3, the comparison is carried out
with some recent theoretical outcomes obtained from
di↵erent frameworks. The so-called continuum-QCD,
based on the Dyson-Schwinger equation and the BSE,
is able to yield the PDF, via Mellin moments evalu-
ated in Euclidean space. In particular, we compare
with the results presented i) in Ref. [5], where the

Q=5.2 GeV

---valence
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the electromagnetic form factor [75], the PDF [76] and
the 3D imaging [62], have confirmed its reliability and
encouraged to broad the scope of our investigation.
It should be pointed out that (it will become clear in
what follows) the evaluation of quantities that depend
not only upon the longitudinal dof but also the trans-
verse ones leads to sharply increase the sensitivity to
the dynamical content of a given phenomenological
description of the pion, namely to increase its predic-
tive power. Furthermore, the joint use of the Fock
expansion, meaningful in the Minkowski space, allows
one to resolve the gluonic content of the pion state.

The paper outline is as follows. In Sect. II, the gen-
eral formalism and the notations are introduced, high-
lighting the ingredients of our dynamical approach,
namely i) the Bethe-Salpeter amplitude, solution of
the 4D homogeneous Bethe-Salpeter equation, and
ii) the Nakanishi integral representation of the BS-
amplitude. In Sect. III, the expressions of leading-
and subleading-twist uTMDs are given in terms of
the Bethe-Salpeter amplitude of the pion. In Sec. IV
and V, the leading and subleading-twist uTMDs are
shown and compared with outcomes from other ap-
proaches. Finally, in Sect. IV, the conclusions are
drawn, and the perspectives of our approach are pre-
sented.

II. GENERALITIES

For a pion with four-momentum P ⌘ {P�, P+,P?}
(where P 2 = P+P�

� |P?|
2 = M2 and the LF co-

ordinates are a± = a0 ± a3), and by adopting both
i) a frame where P? = 0 and ii) the light-cone gauge
A+

g
= 0, the quark leading-twist uTMD, fq

1 (�, ⇠), is
defined as follows (for a general introduction see, e.g.,
Ref. [1, 6])
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where Nc is the number of colors,  q is the fermionic
field, and the quark four-momentum is given in terms
of LF coordinate by pq ⌘ {p�

q
, ⇠P+,k? + P?/2},

with � = |k?|
2. The antiquark uTMD is obtained

by using the proper four-momentum pq̄ ⌘ {p�q̄ , (1 �

⇠)P+,�k? + P?/2}, recalling that P = pq + pq̄ and
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where F q
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(t) is the quark contribution to the elec-

tromagnetic (em) form factor of the pion. The lat-
ter results to be equal to F⇡(t) = eqF q

⇡
(t) + eq̄F q̄

⇡
(t),

with t = (P 0
� P )2, and is related to the matrix ele-

ment of the four-current by Nc hP | ̄q(0)�µ q(0)|P i =
2Pµ F⇡(t = 0). Finally, it should be pointed that in-
serting a complete basis in Eq. (1) and exploiting
the good and bad components of the fermionic field
one can easily demonstrate that fq

1 (�, ⇠) � 0 (see Ref.
[77]).

In order to describe the pion by taking into ac-
count at some extent the QCD dynamics in the non-
perturbative regime, it is useful to resort to the Man-
delstam framework [78], where the interacting quark-
pion vertex is expressed in terms of the (reduced) BS-
amplitude, i.e. the solution of the 4D homogeneous
BSE, and defined by
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where the fermionc field fulfills the Poincaré trans-
lation  (x) = eiP̂ ·x (0)e�iP̂ ·x (recall that only the
component P̂� is interacting in the LF dynamics, see,
e.g., Ref. [79]).

Thus, by using the Feynman-like diagrammatic pic-
ture inherent to the Mandelstam framework (see, e.g.,
Ref. [75] for the application to the em form factor),
one can write the following expression for fq
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For the sake of completeness, let us write the BSE in
ladder approximation, i.e. the one we are adopting for
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the electromagnetic form factor [75], the PDF [76] and
the 3D imaging [62], have confirmed its reliability and
encouraged to broad the scope of our investigation.
It should be pointed out that (it will become clear in
what follows) the evaluation of quantities that depend
not only upon the longitudinal dof but also the trans-
verse ones leads to sharply increase the sensitivity to
the dynamical content of a given phenomenological
description of the pion, namely to increase its predic-
tive power. Furthermore, the joint use of the Fock
expansion, meaningful in the Minkowski space, allows
one to resolve the gluonic content of the pion state.

The paper outline is as follows. In Sect. II, the gen-
eral formalism and the notations are introduced, high-
lighting the ingredients of our dynamical approach,
namely i) the Bethe-Salpeter amplitude, solution of
the 4D homogeneous Bethe-Salpeter equation, and
ii) the Nakanishi integral representation of the BS-
amplitude. In Sect. III, the expressions of leading-
and subleading-twist uTMDs are given in terms of
the Bethe-Salpeter amplitude of the pion. In Sec. IV
and V, the leading and subleading-twist uTMDs are
shown and compared with outcomes from other ap-
proaches. Finally, in Sect. IV, the conclusions are
drawn, and the perspectives of our approach are pre-
sented.
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where Nc is the number of colors,  q is the fermionic
field, and the quark four-momentum is given in terms
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e.g., Ref. [79]).

Thus, by using the Feynman-like diagrammatic pic-
ture inherent to the Mandelstam framework (see, e.g.,
Ref. [75] for the application to the em form factor),
one can write the following expression for fq
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tal for investigating the dynamical chiral-symmetry
breaking) and a quark-antiquark bound system (i.e.
the simplest bound system in QCD). This very pe-
culiar feature has attracted many phenomenological
e↵orts, so that the uTMDPDFs have been evaluated
within several frameworks, e.g., i) the pion constituent
models [20, 21]; ii) the Nambu-Jona-Lasinio model
with Pauli-Villars regularization[22], or proper time
one [23]; iii) the light-front holographic model [24, 25],
iv) the Dyson-Scwhinger equations in Euclidean space
[26].
In this paper, we present the first evaluation of the

twist-2, twist-3 and twist-4 uTMDPDFs within a dy-
namical framework in Minkowski space, where the ho-
mogeneous Bethe-Salpeter equation (BSE) for a qq̄
pair has been solved with an interaction kernel based
on the exchange of a massive gluon. Since the BSE is
an integral equation, one can address the nonpertur-
bative generation of a bound state from the needed
infinite exchange of the intermediate vector boson,
and hence investigate its peculiar dynamical features.
Indeed, in spirit, our approach is similar to the one
developed in Ref. [26] for evaluating the leading-
twist uTMDPDF, where it was also taken into ac-
count the gap-equation of the quark propagator and
a confining interaction, but in Euclidean space. In
this case, one resorts to a suitable method (based on
the moments and a parametrization of the Euclidean
BS amplitude) to get the Minkowski-space distribu-
tion function. A basic ingredient of our approach for
solving the BSE is the Nakanishi integral representa-
tion (NIR) of the Bethe-Salpeter (BS) amplitude. It
has to be emphasized that such representation allows
one to successfully deal with the analytic structure
of the BS amplitude, obtaining an integral equation
formally equivalent to the initial BSE and more suit-

able for the numerical treatment. Many and relevant
applications of our approach to the pion, as the elec-
tromagnetic form factor [27], the PDF [28] and the 3D
imaging [29], have confirmed its reliability, and hence
encourage broadening the scope of our investigation.
It should be pointed out that (it will become clear in
what follows) the evaluation of quantities that depend
not only upon the longitudinal dof but also the trans-
verse ones leads to sharply increase the sensitivity to
the dynamical content of a given phenomenological de-
scription of the pion, namely to increase its predictive
power.

The outline the paper is as follows. In Sect. II,
the general formalism and the notations are intro-
duced, highlighting the ingredients of our dynamical
approach, namely i) the Bethe-Salpeter amplitude, so-
lution of the homogeneous Bethe-Salpeter equation,
and ii) the Nakanishi integral representation of the
BS amplitude. In Sect.III, the expressions of leading-
and subleading-twist uTMDPDFs are given in terms
of the Bethe-Salpeter amplitude of the pion. In Sec.
IV and V, the leading and subleading-twist uTMD-
PDFs are shown and compared with outcomes from
other approaches. Finally, in Sect. VI, the conclu-
sions are drawn, and the perspectives of our approach
are presented.

II. GENERALITIES

In a pion with four-momentum P ⌘ {P�, P+,P?}
(recall P 2 = M2), adopting the light-cone gauge
A+

g = 0 and a frame where P? = 0, the quark leading-
twist uTMDPDF, fq

1 (�, ⇠), is defined as follows (for a
general introduction see, e.g., Ref. [1])

fq
1 (�, ⇠) =
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where Nc is the number of colors,  q is the fermionic field, and the quark four-momentum is given in terms of
LF coordinate by pq ⌘ {p�q , ⇠P

+,k? +P?/2}, with � = |k?|
2. The antiquark uTMDPDF is obtained by using

the proper four-momentum pq̄ ⌘ {p�q̄ , (1 � ⇠)P+,�k? + P?/2}, with P = pq + pq̄ and k = (pq � pq̄)/2. The
normalization is given by
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where F q
⇡(t) is the quark contribution to the electromagnetic (em) form factor of the pion, that results to be

F⇡(t) = eqF q
⇡(t) + eq̄F q̄

⇡(t), with t = (P 0
� P )2.
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FIG. 2. Normalized pion transverse distribution func-
tion, Eq. (41), vs �/m2. The normalization is given by
D?(0) = 22.945 GeV�2. Thick solid line: full calcula-
tion. Dashed line: the same as the full line, but times
(�/m2)4. Dash-dotted line: the same as the full line,
but times (�/m2)2. Dash-double-dotted line: exponen-

tial form e��/(0.422), with the parameter from Table 1 of
Ref. [21], corresponding to a Gaussian Ansatz for f1(�, ⇠)
(see text).

the one obtained in Ref. [26], where the pion LF-wave
function is determined from a beyond rainbow-ladder
Dyson-Schwinger equations (DSE) Euclidean calcula-
tion, by exploiting the �-dependent moments in ⇠ and
a suitable parametrization of the BS amplitude.

In Fig. 4, the quantitative comparison at ⇠ = 0.5
with some phenomenological outcomes is presented.
As already mentioned for �/m2

! 0 (see the uper
panel with linear ordinates) there are remarkable dif-
ferences that, indeed, are present also on the tails (see
the lower panel with logarithmic ordinates). This last
feature impacts the value of h�/m2

i, as shown in Table
I (recall that m = 0.255 GeV).

TABLE I. The average value h�/m2i for i) fS
1 (�, ⇠ =

0.5) from the present approach (NIR+BSE); ii) the out-
come from the LF wave function obtained by using DSE
calculation[26] (LFDSE); iii) the LF constituent quark-
model of Ref. [20, 21] (LFCQM) are shown in the second
column. the NJM with Pauli-Villars regulator [22]. In
the third column, the values of i) uS(⇠ = 0.5) for our ap-
proach and ii) the ones corresponding to the model PDFs
are presented. In the last column, the pion charge radius
for each approach, recalling that rPDG

ch = 0.659±0.004[50]
is reported.

h�/m2i u(⇠ = 0.5) rch [fm]

NIR+BSE 1.56 1.60 0.663

LFDSE 3.77 1.36 0.590

LFCQM 2.71 1.37 0.670 ?

NJM 4.08 1.01 0.557

FIG. 3. Pion unpolarized transverse-momentum distribu-
tion f1(�, ⇠), Eq. (8), at the initial scale. The normaliza-
tion is

R 1

0
d⇠

R1
0

d� f1(�, ⇠) = 1.
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FIG. 1. (Color online). Left panel: the symmetric pion PDF, uS(⇠), with its contributions uS
N (⇠), uS

d (⇠) and uS
2d(⇠) (cf

Eq. (31)). Dash-dotted line: uS(⇠). Dashed line: uS
N (⇠). Dotted line: uS

d (⇠). Dash-double-dotted line: uS
2d(⇠). Right

panel: uq(⇠), uS(⇠), uAS(⇠) and the LF-valence PDF of the pion, uLF
val(⇠). Solid line: quark PDF, Eq. (31). Dashed line:

uS(⇠). Dotted line: uAS(⇠). Dash-dotted line: uLF
val(⇠) (see Ref. [76]), with normalization equal to Pval = 0.7 (see text).

with the normalization that follows from Eq. (29)
and the vanishing result of the double integration of
fAS

1 (�, ⇠). Finally, the quark and anti-quark PDFs
are evaluated through

uq(q̄)(⇠) = uS(⇠)± uAS(⇠) , (31)

with the normalization still given by Eq. (29). Within
the SU(3)-flavor symmetry, one has to implement the
charge symmetry (see, e.g. Ref. [81]) at the initial
scale, and therefore uS(⇠) is the PDF to be com-
pared, after the proper evolution, with the experimen-
tal data, as it has been shown in Ref. [76].
In the left panel of Fig. 1, uS(⇠) and its three

contributions (see Eqs. (D4), (D5) and (D6)) are
shown. The calculation has been carried out by
adopting the BS-amplitude obtained by using the so-
lution of the BSE as described in Ref. [62], using
the following values of the three input parameters:
m = 255 MeV, µ = 637.5 MeV and ⇤ = 306 MeV,
able to reproduce the pion decay constant fPDG

⇡
=

130.50(1)(3)(13)MeV [93] (recall that the pion charge
radius results to be rch = 0.663 fm [75], in excellent
agreement with rPDG

ch
= 0.659± 0.004 fm [94]). A re-

markable cancellation among the contributions takes
place, and this represents a common feature for all
the integrated quantities generated by the uTMDs we
are considering. In the right panel, one can see the
comparison between the quark PDF, uS(AS)(⇠) and
the LF-valence PDF, resulting from the one-to-one

relation between the LF-projected BS amplitude and
the valence amplitude of the Fock expansion of the
pion state. In particular, the LF-valence PDF (see
Refs. [62, 76]), is given by

uLF

val
(⇠) =

Z 1

0

d�

(4⇡)2

h
| "#(�, z)|

2+| ""(�, z)|
2
i
, (32)

where ⇠ = (1�z)/2,  "#(�, z) is the anti-aligned com-
ponent of the LF-valence amplitude and  ""(�, z) the
aligned one (of purely relativistic nature having an
orbital angular momentum equal to 1). These ampli-
tudes are suitable combinations of the LF-projected
scalar functions �i(k;P ), Eq. (22). The integral on ⇠
of LF-valence PDF gives the probability of the valence
state in the Fock expansion and amounts to

Pval =

Z 1

0
d⇠ uLF

val
(⇠) = 0.7 . (33)

The striking feature shown in the left panel is the
shift toward low ⇠ of the quark PDF, so that for this
quantity the symmetry ⇠ ! 1� ⇠ is slightly violated.

B. Analysing the shift and the gluon content

The PDF calculations based on the BS-amplitude
are able to capture an explicit gluonic e↵ect, to be
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taken distinct from the one responsible for the e↵ec-
tive mass of the constituents. In particular, the dif-
ference between the two symmetric PDFs, i.e. uS(⇠)
and uLF

val
(⇠) (recall that has Pval = 0.7), can be traced

back to the non negligible probability of the higher
Fock states (HFS), where a qq̄ pair interacts by ex-
changing any number of gluons. Interestingly, the dif-
ference can be e↵ectively described only by a factor,
since it turns out that uLF

val
(⇠)/Pval largely overlaps

uS(⇠). Finally, also the small, but relevant, shift of
the quark PDF with respect to uS(⇠) has to be as-
cribed to the presence of HFS, as discussed in what
follows.
To get a qualitative view, we remind that the

pion state can be, in principle, decomposed in Fock-
components, which are schematically written in ladder
approximation as

|⇡i = |qq̄i+ |qq̄gi+ |qq̄ 2gi+ · · · (34)

Due to the charge symmetry, each Fock-component is
invariant by q $ q̄, and hence the valence state |qq̄i
provides a symmetric contribution to uq(⇠), identified
with uLF

val
(⇠). The following terms contain gluons up

to infinity. In our model, the gluon has an e↵ective
mass about twice the quark mass, so that the HFS cu-
mulative e↵ect results in a small shift of the uq(⇠) peak
at ⇠ < 1/2, as shown in the right panel of Fig. 1. Ac-
tually, a similar e↵ect, related to the increasing mass
of the remnant, can be also recognized in the nucleon,
where one has a valence parton distribution with a
peak around 1/3 due to the presence of the other two
constituent quarks. In the case of the pion, the e↵ect
is small since the valence component |qq̄i has 70% of
probability (as generated by our dynamical calcula-
tion), and hence is largely dominant.

To become more quantitative and illustrate this ef-
fect, we schematically write the quark PDF by using
the Fock expansion of the pion state, Eq. (34), and
inserting LF variables [79], one has

uq(⇠) =
1X

n=2

(
nY

i

Z
d2ki?
(2⇡)2

Z 1

0
d⇠i

)

⇥� (⇠ � ⇠1) �

 
1�

nX

i=1

⇠i

!
�

 
nX

i=1

ki?

!

⇥
�� n(⇠1,k1?, ⇠2,k2?, ...)

��2 , (35)

where ⇠1(2) is the longitudinal-momentum fraction
of the quark (antiquark) in each Fock state, com-
posed by a qq̄ pair and n � 2 gluons, generated by
the iteration of the one-gluon exchange. Moreover,

 n(⇠1,k1?, ⇠2,k2?, ...) is the probability amplitude of
the corresponding Fock component and fulfills a nor-
malization condition that follows from the one of the
pion state. In the n-th state one has

⇠1 = 1� ⇠2 �
nX

g=3

⇠g . (36)

Since ⇠i > 0 for massive particles, the average value
of ⇠1 starts to decreases while the number of gluons
increases, as quantitatively shown in what follows.

Looking at the right panel of Fig. 1, one can realize
that while the valence term, with probability Pval =
0.7, has a peak at ⇠1 = ⇠2 = 1/2, given the symmetry
of | 2(⇠1,k1?, ⇠2,k2?)|2 all the HFS shift the peak to
⇠1 < 1/2, and decrease the tail, due to the constraint
of the overall normalization. This is reflected in the
evaluation of the first moment (recall ⇠q ⌘ ⇠1)

h⇠qi = Pval h⇠qival +
X

n>2

Pn h⇠qin

= Pval h⇠qival + (1� Pval) h⇠qiHFS , (37)

where Pn is the probability of the n-th Fock state
beyond the valence one. The first term in Eq. (37)
is equal to 0.35, since 1/2 is weighted by Pval, and
the rest is weighted by 0.3. Notice that for each HFS,
normalized to 1, one has

h⇠qin = 1� h⇠q̄in �

nX

i=3

h⇠giin

= 1� h⇠q̄in � (n� 2)h⇠gin , (38)

where the gluon bosonic nature leads to the factor
n� 2.

The actual value of the first moment of uq(⇠) is

h⇠qi =

Z 1

0
d⇠

Z 1

0
d� ⇠ fq

1 (�, ⇠) = 0.471 , (39)

that amounts to an average of h⇠qiHFS equal to 0.40.
We can further analyse h⇠qiHFS , aiming at extract-

ing a quantitative estimate of the exchanged-gluon
contribution, h⇠gi. From the momentum sum rule
Eq. (37), and recalling Eq. (36), we get

h⇠qiHFS =
1

1� Pval

X

n>2

Pn h⇠qin

= 1� h⇠q̄iHFS � h⇠gi , (40)

where

h⇠gi =
1

1� Pval

X
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taken distinct from the one responsible for the e↵ec-
tive mass of the constituents. In particular, the dif-
ference between the two symmetric PDFs, i.e. uS(⇠)
and uLF

val
(⇠) (recall that has Pval = 0.7), can be traced

back to the non negligible probability of the higher
Fock states (HFS), where a qq̄ pair interacts by ex-
changing any number of gluons. Interestingly, the dif-
ference can be e↵ectively described only by a factor,
since it turns out that uLF

val
(⇠)/Pval largely overlaps

uS(⇠). Finally, also the small, but relevant, shift of
the quark PDF with respect to uS(⇠) has to be as-
cribed to the presence of HFS, as discussed in what
follows.
To get a qualitative view, we remind that the

pion state can be, in principle, decomposed in Fock-
components, which are schematically written in ladder
approximation as

|⇡i = |qq̄i+ |qq̄gi+ |qq̄ 2gi+ · · · (34)

Due to the charge symmetry, each Fock-component is
invariant by q $ q̄, and hence the valence state |qq̄i
provides a symmetric contribution to uq(⇠), identified
with uLF

val
(⇠). The following terms contain gluons up

to infinity. In our model, the gluon has an e↵ective
mass about twice the quark mass, so that the HFS cu-
mulative e↵ect results in a small shift of the uq(⇠) peak
at ⇠ < 1/2, as shown in the right panel of Fig. 1. Ac-
tually, a similar e↵ect, related to the increasing mass
of the remnant, can be also recognized in the nucleon,
where one has a valence parton distribution with a
peak around 1/3 due to the presence of the other two
constituent quarks. In the case of the pion, the e↵ect
is small since the valence component |qq̄i has 70% of
probability (as generated by our dynamical calcula-
tion), and hence is largely dominant.

To become more quantitative and illustrate this ef-
fect, we schematically write the quark PDF by using
the Fock expansion of the pion state, Eq. (34), and
inserting LF variables [79], one has

uq(⇠) =
1X

n=2

(
nY

i

Z
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0
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��2 , (35)

where ⇠1(2) is the longitudinal-momentum fraction
of the quark (antiquark) in each Fock state, com-
posed by a qq̄ pair and n � 2 gluons, generated by
the iteration of the one-gluon exchange. Moreover,

 n(⇠1,k1?, ⇠2,k2?, ...) is the probability amplitude of
the corresponding Fock component and fulfills a nor-
malization condition that follows from the one of the
pion state. In the n-th state one has

⇠1 = 1� ⇠2 �
nX

g=3

⇠g . (36)

Since ⇠i > 0 for massive particles, the average value
of ⇠1 starts to decreases while the number of gluons
increases, as quantitatively shown in what follows.

Looking at the right panel of Fig. 1, one can realize
that while the valence term, with probability Pval =
0.7, has a peak at ⇠1 = ⇠2 = 1/2, given the symmetry
of | 2(⇠1,k1?, ⇠2,k2?)|2 all the HFS shift the peak to
⇠1 < 1/2, and decrease the tail, due to the constraint
of the overall normalization. This is reflected in the
evaluation of the first moment (recall ⇠q ⌘ ⇠1)

h⇠qi = Pval h⇠qival +
X

n>2

Pn h⇠qin

= Pval h⇠qival + (1� Pval) h⇠qiHFS , (37)

where Pn is the probability of the n-th Fock state
beyond the valence one. The first term in Eq. (37)
is equal to 0.35, since 1/2 is weighted by Pval, and
the rest is weighted by 0.3. Notice that for each HFS,
normalized to 1, one has

h⇠qin = 1� h⇠q̄in �

nX

i=3

h⇠giin

= 1� h⇠q̄in � (n� 2)h⇠gin , (38)

where the gluon bosonic nature leads to the factor
n� 2.

The actual value of the first moment of uq(⇠) is

h⇠qi =

Z 1

0
d⇠

Z 1

0
d� ⇠ fq

1 (�, ⇠) = 0.471 , (39)

that amounts to an average of h⇠qiHFS equal to 0.40.
We can further analyse h⇠qiHFS , aiming at extract-

ing a quantitative estimate of the exchanged-gluon
contribution, h⇠gi. From the momentum sum rule
Eq. (37), and recalling Eq. (36), we get

h⇠qiHFS =
1

1� Pval

X

n>2

Pn h⇠qin

= 1� h⇠q̄iHFS � h⇠gi , (40)

where

h⇠gi =
1

1� Pval

X

n�3

Pn(n� 2) h⇠gin . (41)
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taken distinct from the one responsible for the e↵ec-
tive mass of the constituents. In particular, the dif-
ference between the two symmetric PDFs, i.e. uS(⇠)
and uLF

val
(⇠) (recall that has Pval = 0.7), can be traced

back to the non negligible probability of the higher
Fock states (HFS), where a qq̄ pair interacts by ex-
changing any number of gluons. Interestingly, the dif-
ference can be e↵ectively described only by a factor,
since it turns out that uLF

val
(⇠)/Pval largely overlaps

uS(⇠). Finally, also the small, but relevant, shift of
the quark PDF with respect to uS(⇠) has to be as-
cribed to the presence of HFS, as discussed in what
follows.
To get a qualitative view, we remind that the

pion state can be, in principle, decomposed in Fock-
components, which are schematically written in ladder
approximation as

|⇡i = |qq̄i+ |qq̄gi+ |qq̄ 2gi+ · · · (34)

Due to the charge symmetry, each Fock-component is
invariant by q $ q̄, and hence the valence state |qq̄i
provides a symmetric contribution to uq(⇠), identified
with uLF

val
(⇠). The following terms contain gluons up

to infinity. In our model, the gluon has an e↵ective
mass about twice the quark mass, so that the HFS cu-
mulative e↵ect results in a small shift of the uq(⇠) peak
at ⇠ < 1/2, as shown in the right panel of Fig. 1. Ac-
tually, a similar e↵ect, related to the increasing mass
of the remnant, can be also recognized in the nucleon,
where one has a valence parton distribution with a
peak around 1/3 due to the presence of the other two
constituent quarks. In the case of the pion, the e↵ect
is small since the valence component |qq̄i has 70% of
probability (as generated by our dynamical calcula-
tion), and hence is largely dominant.

To become more quantitative and illustrate this ef-
fect, we schematically write the quark PDF by using
the Fock expansion of the pion state, Eq. (34), and
inserting LF variables [79], one has

uq(⇠) =
1X

n=2

(
nY

i
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where ⇠1(2) is the longitudinal-momentum fraction
of the quark (antiquark) in each Fock state, com-
posed by a qq̄ pair and n � 2 gluons, generated by
the iteration of the one-gluon exchange. Moreover,

 n(⇠1,k1?, ⇠2,k2?, ...) is the probability amplitude of
the corresponding Fock component and fulfills a nor-
malization condition that follows from the one of the
pion state. In the n-th state one has

⇠1 = 1� ⇠2 �
nX

g=3

⇠g . (36)

Since ⇠i > 0 for massive particles, the average value
of ⇠1 starts to decreases while the number of gluons
increases, as quantitatively shown in what follows.

Looking at the right panel of Fig. 1, one can realize
that while the valence term, with probability Pval =
0.7, has a peak at ⇠1 = ⇠2 = 1/2, given the symmetry
of | 2(⇠1,k1?, ⇠2,k2?)|2 all the HFS shift the peak to
⇠1 < 1/2, and decrease the tail, due to the constraint
of the overall normalization. This is reflected in the
evaluation of the first moment (recall ⇠q ⌘ ⇠1)

h⇠qi = Pval h⇠qival +
X

n>2

Pn h⇠qin

= Pval h⇠qival + (1� Pval) h⇠qiHFS , (37)

where Pn is the probability of the n-th Fock state
beyond the valence one. The first term in Eq. (37)
is equal to 0.35, since 1/2 is weighted by Pval, and
the rest is weighted by 0.3. Notice that for each HFS,
normalized to 1, one has

h⇠qin = 1� h⇠q̄in �

nX

i=3

h⇠giin

= 1� h⇠q̄in � (n� 2)h⇠gin , (38)

where the gluon bosonic nature leads to the factor
n� 2.

The actual value of the first moment of uq(⇠) is

h⇠qi =

Z 1

0
d⇠

Z 1

0
d� ⇠ fq

1 (�, ⇠) = 0.471 , (39)

that amounts to an average of h⇠qiHFS equal to 0.40.
We can further analyse h⇠qiHFS , aiming at extract-

ing a quantitative estimate of the exchanged-gluon
contribution, h⇠gi. From the momentum sum rule
Eq. (37), and recalling Eq. (36), we get

h⇠qiHFS =
1

1� Pval

X

n>2

Pn h⇠qin

= 1� h⇠q̄iHFS � h⇠gi , (40)

where

h⇠gi =
1

1� Pval

X

n�3

Pn(n� 2) h⇠gin . (41)
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taken distinct from the one responsible for the e↵ec-
tive mass of the constituents. In particular, the dif-
ference between the two symmetric PDFs, i.e. uS(⇠)
and uLF

val
(⇠) (recall that has Pval = 0.7), can be traced

back to the non negligible probability of the higher
Fock states (HFS), where a qq̄ pair interacts by ex-
changing any number of gluons. Interestingly, the dif-
ference can be e↵ectively described only by a factor,
since it turns out that uLF

val
(⇠)/Pval largely overlaps

uS(⇠). Finally, also the small, but relevant, shift of
the quark PDF with respect to uS(⇠) has to be as-
cribed to the presence of HFS, as discussed in what
follows.
To get a qualitative view, we remind that the

pion state can be, in principle, decomposed in Fock-
components, which are schematically written in ladder
approximation as

|⇡i = |qq̄i+ |qq̄gi+ |qq̄ 2gi+ · · · (34)

Due to the charge symmetry, each Fock-component is
invariant by q $ q̄, and hence the valence state |qq̄i
provides a symmetric contribution to uq(⇠), identified
with uLF

val
(⇠). The following terms contain gluons up

to infinity. In our model, the gluon has an e↵ective
mass about twice the quark mass, so that the HFS cu-
mulative e↵ect results in a small shift of the uq(⇠) peak
at ⇠ < 1/2, as shown in the right panel of Fig. 1. Ac-
tually, a similar e↵ect, related to the increasing mass
of the remnant, can be also recognized in the nucleon,
where one has a valence parton distribution with a
peak around 1/3 due to the presence of the other two
constituent quarks. In the case of the pion, the e↵ect
is small since the valence component |qq̄i has 70% of
probability (as generated by our dynamical calcula-
tion), and hence is largely dominant.

To become more quantitative and illustrate this ef-
fect, we schematically write the quark PDF by using
the Fock expansion of the pion state, Eq. (34), and
inserting LF variables [79], one has

uq(⇠) =
1X

n=2

(
nY

i

Z
d2ki?
(2⇡)2
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where ⇠1(2) is the longitudinal-momentum fraction
of the quark (antiquark) in each Fock state, com-
posed by a qq̄ pair and n � 2 gluons, generated by
the iteration of the one-gluon exchange. Moreover,

 n(⇠1,k1?, ⇠2,k2?, ...) is the probability amplitude of
the corresponding Fock component and fulfills a nor-
malization condition that follows from the one of the
pion state. In the n-th state one has

⇠1 = 1� ⇠2 �
nX

g=3

⇠g . (36)

Since ⇠i > 0 for massive particles, the average value
of ⇠1 starts to decreases while the number of gluons
increases, as quantitatively shown in what follows.

Looking at the right panel of Fig. 1, one can realize
that while the valence term, with probability Pval =
0.7, has a peak at ⇠1 = ⇠2 = 1/2, given the symmetry
of | 2(⇠1,k1?, ⇠2,k2?)|2 all the HFS shift the peak to
⇠1 < 1/2, and decrease the tail, due to the constraint
of the overall normalization. This is reflected in the
evaluation of the first moment (recall ⇠q ⌘ ⇠1)

h⇠qi = Pval h⇠qival +
X

n>2

Pn h⇠qin

= Pval h⇠qival + (1� Pval) h⇠qiHFS , (37)

where Pn is the probability of the n-th Fock state
beyond the valence one. The first term in Eq. (37)
is equal to 0.35, since 1/2 is weighted by Pval, and
the rest is weighted by 0.3. Notice that for each HFS,
normalized to 1, one has

h⇠qin = 1� h⇠q̄in �

nX

i=3

h⇠giin

= 1� h⇠q̄in � (n� 2)h⇠gin , (38)

where the gluon bosonic nature leads to the factor
n� 2.

The actual value of the first moment of uq(⇠) is

h⇠qi =

Z 1

0
d⇠

Z 1

0
d� ⇠ fq

1 (�, ⇠) = 0.471 , (39)

that amounts to an average of h⇠qiHFS equal to 0.40.
We can further analyse h⇠qiHFS , aiming at extract-

ing a quantitative estimate of the exchanged-gluon
contribution, h⇠gi. From the momentum sum rule
Eq. (37), and recalling Eq. (36), we get

h⇠qiHFS =
1

1� Pval

X

n>2

Pn h⇠qin

= 1� h⇠q̄iHFS � h⇠gi , (40)

where

h⇠gi =
1

1� Pval

X

n�3

Pn(n� 2) h⇠gin . (41)
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taken distinct from the one responsible for the e↵ec-
tive mass of the constituents. In particular, the dif-
ference between the two symmetric PDFs, i.e. uS(⇠)
and uLF

val
(⇠) (recall that has Pval = 0.7), can be traced

back to the non negligible probability of the higher
Fock states (HFS), where a qq̄ pair interacts by ex-
changing any number of gluons. Interestingly, the dif-
ference can be e↵ectively described only by a factor,
since it turns out that uLF

val
(⇠)/Pval largely overlaps

uS(⇠). Finally, also the small, but relevant, shift of
the quark PDF with respect to uS(⇠) has to be as-
cribed to the presence of HFS, as discussed in what
follows.
To get a qualitative view, we remind that the

pion state can be, in principle, decomposed in Fock-
components, which are schematically written in ladder
approximation as

|⇡i = |qq̄i+ |qq̄gi+ |qq̄ 2gi+ · · · (34)

Due to the charge symmetry, each Fock-component is
invariant by q $ q̄, and hence the valence state |qq̄i
provides a symmetric contribution to uq(⇠), identified
with uLF

val
(⇠). The following terms contain gluons up

to infinity. In our model, the gluon has an e↵ective
mass about twice the quark mass, so that the HFS cu-
mulative e↵ect results in a small shift of the uq(⇠) peak
at ⇠ < 1/2, as shown in the right panel of Fig. 1. Ac-
tually, a similar e↵ect, related to the increasing mass
of the remnant, can be also recognized in the nucleon,
where one has a valence parton distribution with a
peak around 1/3 due to the presence of the other two
constituent quarks. In the case of the pion, the e↵ect
is small since the valence component |qq̄i has 70% of
probability (as generated by our dynamical calcula-
tion), and hence is largely dominant.

To become more quantitative and illustrate this ef-
fect, we schematically write the quark PDF by using
the Fock expansion of the pion state, Eq. (34), and
inserting LF variables [79], one has

uq(⇠) =
1X

n=2

(
nY
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where ⇠1(2) is the longitudinal-momentum fraction
of the quark (antiquark) in each Fock state, com-
posed by a qq̄ pair and n � 2 gluons, generated by
the iteration of the one-gluon exchange. Moreover,

 n(⇠1,k1?, ⇠2,k2?, ...) is the probability amplitude of
the corresponding Fock component and fulfills a nor-
malization condition that follows from the one of the
pion state. In the n-th state one has

⇠1 = 1� ⇠2 �
nX

g=3

⇠g . (36)

Since ⇠i > 0 for massive particles, the average value
of ⇠1 starts to decreases while the number of gluons
increases, as quantitatively shown in what follows.

Looking at the right panel of Fig. 1, one can realize
that while the valence term, with probability Pval =
0.7, has a peak at ⇠1 = ⇠2 = 1/2, given the symmetry
of | 2(⇠1,k1?, ⇠2,k2?)|2 all the HFS shift the peak to
⇠1 < 1/2, and decrease the tail, due to the constraint
of the overall normalization. This is reflected in the
evaluation of the first moment (recall ⇠q ⌘ ⇠1)

h⇠qi = Pval h⇠qival +
X

n>2

Pn h⇠qin

= Pval h⇠qival + (1� Pval) h⇠qiHFS , (37)

where Pn is the probability of the n-th Fock state
beyond the valence one. The first term in Eq. (37)
is equal to 0.35, since 1/2 is weighted by Pval, and
the rest is weighted by 0.3. Notice that for each HFS,
normalized to 1, one has

h⇠qin = 1� h⇠q̄in �

nX

i=3

h⇠giin

= 1� h⇠q̄in � (n� 2)h⇠gin , (38)

where the gluon bosonic nature leads to the factor
n� 2.

The actual value of the first moment of uq(⇠) is

h⇠qi =

Z 1

0
d⇠

Z 1

0
d� ⇠ fq

1 (�, ⇠) = 0.471 , (39)

that amounts to an average of h⇠qiHFS equal to 0.40.
We can further analyse h⇠qiHFS , aiming at extract-

ing a quantitative estimate of the exchanged-gluon
contribution, h⇠gi. From the momentum sum rule
Eq. (37), and recalling Eq. (36), we get

h⇠qiHFS =
1

1� Pval

X

n>2

Pn h⇠qin

= 1� h⇠q̄iHFS � h⇠gi , (40)

where

h⇠gi =
1

1� Pval

X

n�3

Pn(n� 2) h⇠gin . (41)
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taken distinct from the one responsible for the e↵ec-
tive mass of the constituents. In particular, the dif-
ference between the two symmetric PDFs, i.e. uS(⇠)
and uLF

val
(⇠) (recall that has Pval = 0.7), can be traced

back to the non negligible probability of the higher
Fock states (HFS), where a qq̄ pair interacts by ex-
changing any number of gluons. Interestingly, the dif-
ference can be e↵ectively described only by a factor,
since it turns out that uLF

val
(⇠)/Pval largely overlaps

uS(⇠). Finally, also the small, but relevant, shift of
the quark PDF with respect to uS(⇠) has to be as-
cribed to the presence of HFS, as discussed in what
follows.
To get a qualitative view, we remind that the

pion state can be, in principle, decomposed in Fock-
components, which are schematically written in ladder
approximation as

|⇡i = |qq̄i+ |qq̄gi+ |qq̄ 2gi+ · · · (34)

Due to the charge symmetry, each Fock-component is
invariant by q $ q̄, and hence the valence state |qq̄i
provides a symmetric contribution to uq(⇠), identified
with uLF

val
(⇠). The following terms contain gluons up

to infinity. In our model, the gluon has an e↵ective
mass about twice the quark mass, so that the HFS cu-
mulative e↵ect results in a small shift of the uq(⇠) peak
at ⇠ < 1/2, as shown in the right panel of Fig. 1. Ac-
tually, a similar e↵ect, related to the increasing mass
of the remnant, can be also recognized in the nucleon,
where one has a valence parton distribution with a
peak around 1/3 due to the presence of the other two
constituent quarks. In the case of the pion, the e↵ect
is small since the valence component |qq̄i has 70% of
probability (as generated by our dynamical calcula-
tion), and hence is largely dominant.

To become more quantitative and illustrate this ef-
fect, we schematically write the quark PDF by using
the Fock expansion of the pion state, Eq. (34), and
inserting LF variables [79], one has

uq(⇠) =
1X
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where ⇠1(2) is the longitudinal-momentum fraction
of the quark (antiquark) in each Fock state, com-
posed by a qq̄ pair and n � 2 gluons, generated by
the iteration of the one-gluon exchange. Moreover,

 n(⇠1,k1?, ⇠2,k2?, ...) is the probability amplitude of
the corresponding Fock component and fulfills a nor-
malization condition that follows from the one of the
pion state. In the n-th state one has

⇠1 = 1� ⇠2 �
nX

g=3

⇠g . (36)

Since ⇠i > 0 for massive particles, the average value
of ⇠1 starts to decreases while the number of gluons
increases, as quantitatively shown in what follows.

Looking at the right panel of Fig. 1, one can realize
that while the valence term, with probability Pval =
0.7, has a peak at ⇠1 = ⇠2 = 1/2, given the symmetry
of | 2(⇠1,k1?, ⇠2,k2?)|2 all the HFS shift the peak to
⇠1 < 1/2, and decrease the tail, due to the constraint
of the overall normalization. This is reflected in the
evaluation of the first moment (recall ⇠q ⌘ ⇠1)

h⇠qi = Pval h⇠qival +
X

n>2

Pn h⇠qin

= Pval h⇠qival + (1� Pval) h⇠qiHFS , (37)

where Pn is the probability of the n-th Fock state
beyond the valence one. The first term in Eq. (37)
is equal to 0.35, since 1/2 is weighted by Pval, and
the rest is weighted by 0.3. Notice that for each HFS,
normalized to 1, one has

h⇠qin = 1� h⇠q̄in �

nX

i=3

h⇠giin

= 1� h⇠q̄in � (n� 2)h⇠gin , (38)

where the gluon bosonic nature leads to the factor
n� 2.

The actual value of the first moment of uq(⇠) is

h⇠qi =
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1 (�, ⇠) = 0.471 , (39)

that amounts to an average of h⇠qiHFS equal to 0.40.
We can further analyse h⇠qiHFS , aiming at extract-

ing a quantitative estimate of the exchanged-gluon
contribution, h⇠gi. From the momentum sum rule
Eq. (37), and recalling Eq. (36), we get

h⇠qiHFS =
1

1� Pval

X

n>2

Pn h⇠qin

= 1� h⇠q̄iHFS � h⇠gi , (40)

where

h⇠gi =
1

1� Pval

X

n�3

Pn(n� 2) h⇠gin . (41)
momentum sum-rule in the HFS

quark momentum distribution
first-moment

Pval=0.3    0.4
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taken distinct from the one responsible for the e↵ec-
tive mass of the constituents. In particular, the dif-
ference between the two symmetric PDFs, i.e. uS(⇠)
and uLF

val
(⇠) (recall that has Pval = 0.7), can be traced

back to the non negligible probability of the higher
Fock states (HFS), where a qq̄ pair interacts by ex-
changing any number of gluons. Interestingly, the dif-
ference can be e↵ectively described only by a factor,
since it turns out that uLF

val
(⇠)/Pval largely overlaps

uS(⇠). Finally, also the small, but relevant, shift of
the quark PDF with respect to uS(⇠) has to be as-
cribed to the presence of HFS, as discussed in what
follows.
To get a qualitative view, we remind that the

pion state can be, in principle, decomposed in Fock-
components, which are schematically written in ladder
approximation as

|⇡i = |qq̄i+ |qq̄gi+ |qq̄ 2gi+ · · · (34)

Due to the charge symmetry, each Fock-component is
invariant by q $ q̄, and hence the valence state |qq̄i
provides a symmetric contribution to uq(⇠), identified
with uLF

val
(⇠). The following terms contain gluons up

to infinity. In our model, the gluon has an e↵ective
mass about twice the quark mass, so that the HFS cu-
mulative e↵ect results in a small shift of the uq(⇠) peak
at ⇠ < 1/2, as shown in the right panel of Fig. 1. Ac-
tually, a similar e↵ect, related to the increasing mass
of the remnant, can be also recognized in the nucleon,
where one has a valence parton distribution with a
peak around 1/3 due to the presence of the other two
constituent quarks. In the case of the pion, the e↵ect
is small since the valence component |qq̄i has 70% of
probability (as generated by our dynamical calcula-
tion), and hence is largely dominant.

To become more quantitative and illustrate this ef-
fect, we schematically write the quark PDF by using
the Fock expansion of the pion state, Eq. (34), and
inserting LF variables [79], one has

uq(⇠) =
1X

n=2

(
nY

i

Z
d2ki?
(2⇡)2

Z 1

0
d⇠i

)

⇥� (⇠ � ⇠1) �

 
1�

nX

i=1

⇠i

!
�

 
nX

i=1

ki?

!

⇥
�� n(⇠1,k1?, ⇠2,k2?, ...)

��2 , (35)

where ⇠1(2) is the longitudinal-momentum fraction
of the quark (antiquark) in each Fock state, com-
posed by a qq̄ pair and n � 2 gluons, generated by
the iteration of the one-gluon exchange. Moreover,

 n(⇠1,k1?, ⇠2,k2?, ...) is the probability amplitude of
the corresponding Fock component and fulfills a nor-
malization condition that follows from the one of the
pion state. In the n-th state one has

⇠1 = 1� ⇠2 �
nX

g=3

⇠g . (36)

Since ⇠i > 0 for massive particles, the average value
of ⇠1 starts to decreases while the number of gluons
increases, as quantitatively shown in what follows.

Looking at the right panel of Fig. 1, one can realize
that while the valence term, with probability Pval =
0.7, has a peak at ⇠1 = ⇠2 = 1/2, given the symmetry
of | 2(⇠1,k1?, ⇠2,k2?)|2 all the HFS shift the peak to
⇠1 < 1/2, and decrease the tail, due to the constraint
of the overall normalization. This is reflected in the
evaluation of the first moment (recall ⇠q ⌘ ⇠1)

h⇠qi = Pval h⇠qival +
X

n>2

Pn h⇠qin

= Pval h⇠qival + (1� Pval) h⇠qiHFS , (37)

where Pn is the probability of the n-th Fock state
beyond the valence one. The first term in Eq. (37)
is equal to 0.35, since 1/2 is weighted by Pval, and
the rest is weighted by 0.3. Notice that for each HFS,
normalized to 1, one has

h⇠qin = 1� h⇠q̄in �

nX

i=3

h⇠giin

= 1� h⇠q̄in � (n� 2)h⇠gin , (38)

where the gluon bosonic nature leads to the factor
n� 2.

The actual value of the first moment of uq(⇠) is

h⇠qi =

Z 1

0
d⇠

Z 1

0
d� ⇠ fq

1 (�, ⇠) = 0.471 , (39)

that amounts to an average of h⇠qiHFS equal to 0.40.
We can further analyse h⇠qiHFS , aiming at extract-

ing a quantitative estimate of the exchanged-gluon
contribution, h⇠gi. From the momentum sum rule
Eq. (37), and recalling Eq. (36), we get

h⇠qiHFS =
1

1� Pval

X

n>2

Pn h⇠qin

= 1� h⇠q̄iHFS � h⇠gi , (40)

where

h⇠gi =
1

1� Pval

X

n�3

Pn(n� 2) h⇠gin . (41)
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and uLF

val
(⇠) (recall that has Pval = 0.7), can be traced
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ference can be e↵ectively described only by a factor,
since it turns out that uLF
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uS(⇠). Finally, also the small, but relevant, shift of
the quark PDF with respect to uS(⇠) has to be as-
cribed to the presence of HFS, as discussed in what
follows.
To get a qualitative view, we remind that the

pion state can be, in principle, decomposed in Fock-
components, which are schematically written in ladder
approximation as

|⇡i = |qq̄i+ |qq̄gi+ |qq̄ 2gi+ · · · (34)

Due to the charge symmetry, each Fock-component is
invariant by q $ q̄, and hence the valence state |qq̄i
provides a symmetric contribution to uq(⇠), identified
with uLF

val
(⇠). The following terms contain gluons up

to infinity. In our model, the gluon has an e↵ective
mass about twice the quark mass, so that the HFS cu-
mulative e↵ect results in a small shift of the uq(⇠) peak
at ⇠ < 1/2, as shown in the right panel of Fig. 1. Ac-
tually, a similar e↵ect, related to the increasing mass
of the remnant, can be also recognized in the nucleon,
where one has a valence parton distribution with a
peak around 1/3 due to the presence of the other two
constituent quarks. In the case of the pion, the e↵ect
is small since the valence component |qq̄i has 70% of
probability (as generated by our dynamical calcula-
tion), and hence is largely dominant.

To become more quantitative and illustrate this ef-
fect, we schematically write the quark PDF by using
the Fock expansion of the pion state, Eq. (34), and
inserting LF variables [79], one has
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where ⇠1(2) is the longitudinal-momentum fraction
of the quark (antiquark) in each Fock state, com-
posed by a qq̄ pair and n � 2 gluons, generated by
the iteration of the one-gluon exchange. Moreover,

 n(⇠1,k1?, ⇠2,k2?, ...) is the probability amplitude of
the corresponding Fock component and fulfills a nor-
malization condition that follows from the one of the
pion state. In the n-th state one has

⇠1 = 1� ⇠2 �
nX

g=3

⇠g . (36)

Since ⇠i > 0 for massive particles, the average value
of ⇠1 starts to decreases while the number of gluons
increases, as quantitatively shown in what follows.

Looking at the right panel of Fig. 1, one can realize
that while the valence term, with probability Pval =
0.7, has a peak at ⇠1 = ⇠2 = 1/2, given the symmetry
of | 2(⇠1,k1?, ⇠2,k2?)|2 all the HFS shift the peak to
⇠1 < 1/2, and decrease the tail, due to the constraint
of the overall normalization. This is reflected in the
evaluation of the first moment (recall ⇠q ⌘ ⇠1)

h⇠qi = Pval h⇠qival +
X

n>2

Pn h⇠qin

= Pval h⇠qival + (1� Pval) h⇠qiHFS , (37)

where Pn is the probability of the n-th Fock state
beyond the valence one. The first term in Eq. (37)
is equal to 0.35, since 1/2 is weighted by Pval, and
the rest is weighted by 0.3. Notice that for each HFS,
normalized to 1, one has

h⇠qin = 1� h⇠q̄in �
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where the gluon bosonic nature leads to the factor
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that amounts to an average of h⇠qiHFS equal to 0.40.
We can further analyse h⇠qiHFS , aiming at extract-

ing a quantitative estimate of the exchanged-gluon
contribution, h⇠gi. From the momentum sum rule
Eq. (37), and recalling Eq. (36), we get

h⇠qiHFS =
1

1� Pval
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n>2

Pn h⇠qin

= 1� h⇠q̄iHFS � h⇠gi , (40)

where
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Gluons carry 6% of the longitudinal momentum of the pion!

@ the pion scale
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Gluon momentum in the pion
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Transverse Momentum Distributions

Unpolarized transverse-momentum dependent quark distributions

TMD’s are important for parametrizing the hadronic quark-quark correlator

One can define the T-even subleading quark uTMDs, starting from the
decomposition of the pion correlator (Mulders and Tangerman, Nucl. Phys. B 461, 197 (1996)).

twist-3 uTMD (See Lorcé, Pasquini, and Schweitzer, EPJC 76, 415 (2016)):
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tal for investigating the dynamical chiral-symmetry
breaking) and a quark-antiquark bound system (i.e.
the simplest bound system in QCD). This very pe-
culiar feature has attracted many phenomenological
e↵orts, so that the uTMDPDFs have been evaluated
within several frameworks, e.g., i) the pion constituent
models [20, 21]; ii) the Nambu-Jona-Lasinio model
with Pauli-Villars regularization[22], or proper time
one [23]; iii) the light-front holographic model [24, 25],
iv) the Dyson-Scwhinger equations in Euclidean space
[26].
In this paper, we present the first evaluation of the

twist-2, twist-3 and twist-4 uTMDPDFs within a dy-
namical framework in Minkowski space, where the ho-
mogeneous Bethe-Salpeter equation (BSE) for a qq̄
pair has been solved with an interaction kernel based
on the exchange of a massive gluon. Since the BSE is
an integral equation, one can address the nonpertur-
bative generation of a bound state from the needed
infinite exchange of the intermediate vector boson,
and hence investigate its peculiar dynamical features.
Indeed, in spirit, our approach is similar to the one
developed in Ref. [26] for evaluating the leading-
twist uTMDPDF, where it was also taken into ac-
count the gap-equation of the quark propagator and
a confining interaction, but in Euclidean space. In
this case, one resorts to a suitable method (based on
the moments and a parametrization of the Euclidean
BS amplitude) to get the Minkowski-space distribu-
tion function. A basic ingredient of our approach for
solving the BSE is the Nakanishi integral representa-
tion (NIR) of the Bethe-Salpeter (BS) amplitude. It
has to be emphasized that such representation allows
one to successfully deal with the analytic structure
of the BS amplitude, obtaining an integral equation
formally equivalent to the initial BSE and more suit-

able for the numerical treatment. Many and relevant
applications of our approach to the pion, as the elec-
tromagnetic form factor [27], the PDF [28] and the 3D
imaging [29], have confirmed its reliability, and hence
encourage broadening the scope of our investigation.
It should be pointed out that (it will become clear in
what follows) the evaluation of quantities that depend
not only upon the longitudinal dof but also the trans-
verse ones leads to sharply increase the sensitivity to
the dynamical content of a given phenomenological de-
scription of the pion, namely to increase its predictive
power.

The outline the paper is as follows. In Sect. II,
the general formalism and the notations are intro-
duced, highlighting the ingredients of our dynamical
approach, namely i) the Bethe-Salpeter amplitude, so-
lution of the homogeneous Bethe-Salpeter equation,
and ii) the Nakanishi integral representation of the
BS amplitude. In Sect.III, the expressions of leading-
and subleading-twist uTMDPDFs are given in terms
of the Bethe-Salpeter amplitude of the pion. In Sec.
IV and V, the leading and subleading-twist uTMD-
PDFs are shown and compared with outcomes from
other approaches. Finally, in Sect. VI, the conclu-
sions are drawn, and the perspectives of our approach
are presented.

II. GENERALITIES

In a pion with four-momentum P ⌘ {P�, P+,P?}
(recall P 2 = M2), adopting the light-cone gauge
A+

g = 0 and a frame where P? = 0, the quark leading-
twist uTMDPDF, fq

1 (�, ⇠), is defined as follows (for a
general introduction see, e.g., Ref. [1])

fq
1 (�, ⇠) =

Nc

4

Z
d�k̂?

Z 1

�1

dy�dy?
2(2⇡)3
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y

2
)�+ q(

y

2
)|P i

��
y+=0

(1)

where Nc is the number of colors,  q is the fermionic field, and the quark four-momentum is given in terms of
LF coordinate by pq ⌘ {p�q , ⇠P

+,k? +P?/2}, with � = |k?|
2. The antiquark uTMDPDF is obtained by using

the proper four-momentum pq̄ ⌘ {p�q̄ , (1 � ⇠)P+,�k? + P?/2}, with P = pq + pq̄ and k = (pq � pq̄)/2. The
normalization is given by

Z 1
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2P+
= F q

⇡(0) = 1 (2)

where F q
⇡(t) is the quark contribution to the electromagnetic (em) form factor of the pion, that results to be

F⇡(t) = eqF q
⇡(t) + eq̄F q̄

⇡(t), with t = (P 0
� P )2.
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tal for investigating the dynamical chiral-symmetry
breaking) and a quark-antiquark bound system (i.e.
the simplest bound system in QCD). This very pe-
culiar feature has attracted many phenomenological
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within several frameworks, e.g., i) the pion constituent
models [20, 21]; ii) the Nambu-Jona-Lasinio model
with Pauli-Villars regularization[22], or proper time
one [23]; iii) the light-front holographic model [24, 25],
iv) the Dyson-Scwhinger equations in Euclidean space
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mogeneous Bethe-Salpeter equation (BSE) for a qq̄
pair has been solved with an interaction kernel based
on the exchange of a massive gluon. Since the BSE is
an integral equation, one can address the nonpertur-
bative generation of a bound state from the needed
infinite exchange of the intermediate vector boson,
and hence investigate its peculiar dynamical features.
Indeed, in spirit, our approach is similar to the one
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where Nc is the number of colors,  q is the fermionic field, and the quark four-momentum is given in terms of
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FIG. 8. (Color online) Left panel. The same as in Fig. 5, but for f?q(⇠), f?S(⇠) and f?AS(⇠), Eq. (51), and f?q
EoM (⇠)

as given in Eq. (52). Right panel. Quark unpolarized collinear PDFs ⇠ fq?(⇠). Solid line: full calculation as in left panel.
Dashed line: ⇠ fq?(⇠) obtained by using the second line in Eq. (17) and our fq

1 (⇠). Double-dot-dashed line: the same as
the dashed line but using the valence approximation of the PDF, uLF

val(⇠), with norm equal to 1.
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FIG. 9. (Color online). Left panel. Normalized transverse distribution function P?(�)/P?(0) (cf. Eq. (53)). Dotted
line: full calculation. Solid line: D?(�)/D?(0) for the sake of comparison. Dash-double-dotted line: the same as in the
left panel of Fig. 3. Right panel. Pion unpolarized transverse-momentum distribution fS?(�, ⇠), Eq. (50), for ⇠ = 0.5.
Solid line: full calculation. Dashed line: by using f1(�, ⇠ = 0.5) in Fig. 3 from the LF constituent quark model of
Ref. [35, 56] (cf. the second line in Eq. (17), without the gluonic term). Dash-dotted line: the LF wave function from
DSE calculations [45]. Dash-Double-dotted line: the NJL model [38]. The adopted quark mass m = 255 MeV.

second line of Eq. (17), without the gluon term, as
follows

f?q

EoM
(⇠) ⇠

1

⇠

Z 1

0
d�f?q

EoM
(�, ⇠) ⇠

uLF

val
(⇠)

⇠
. (52)

For the sake of completeness, in the right panel of
Fig. 8, the product ⇠ fq?(⇠) is compared to fq

1 (⇠) and

uLF

val
(⇠) that represents the approximation to f?q

EoM
(⇠)

as given in Eq. (52). Also for fq?(⇠), the full calcu-
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FIG. 5. (Color online) Left panel. Pion unpolarized collinear PDFs: i) eq(⇠) (solid line), Eq. (46), ii) eS(⇠) (dashed
line) and eAS(⇠) (dotted line), Eqs. (45). It is also shown eqEoM (⇠) (dash-dotted line), Eq. (47). Right panel. Quark
unpolarized collinear PDFs: ⇠ eq(⇠). Solid line: full calculation as in the left panel. Dashed line: m/M uq(⇠), with uq(⇠)
shown in the right panel of Fig. 1. Double-dot-dashed line: ⇠ eqEoM (⇠), Eq. (47).

with the quark and anti-quark contributions.
As introduction to the outcomes of our dynamical

approach, it is worth anticipating that the comparison
between full calculations and naive estimates one can
infer from Eq. (17) by using a valence approximation
of the leading-twist f1(�, ⇠), highlights the inspiring
statement one can read in Ref. [77]: the higher-twist
distributions are naturally related to multiparton dis-
tributions. The role of the exchanged gluons becomes
definitely clear through a remarkable shift of the peak
in all the sub-leading uTMD we have analyzed, as
already discussed in the previous Section, as well as
through the sharp di↵erence with the naive estimates,
which exclude the e↵ect of the one-gluon exchange.

A. Twist-3 uTMD: e(�, ⇠)

In the frame where P? = 0 and hence P+ = M , by
using Eq. (27), (B19), (B20), (B21) and (B22), with
i = 1 and the functions b1

n;`j given in Table VII, one

gets the twist-3 uTMDs eS(AS)(�, ⇠), decomposed as
follows

eS(AS)(�, ⇠) = E0(�, ⇠;S(AS)) + Ed(�, ⇠;S(AS))

+E2d(�, ⇠;S(AS)) + E3d(�, ⇠;S(AS)) , (44)

where the functions in the rhs are given in Ap-
pendix E.

1. Longitudinal degree of freedom

In the left panel of Fig. 5, the following collinear
PDFs are shown

e(S,AS)(⇠) =

Z 1

0
d� e(S,AS)(�, ⇠) . (45)

and

eq(⇠) = eS(⇠) + eAS(⇠) . (46)

Moreover, in the spirit of Ref. [35], we also present
the collinear PDF, eq

EoM
(⇠), obtained by integrating

the first line in Eq. (17), but disregarding the gluon
contribution, viz

eq
EoM

(⇠) ⇠
m

M⇠

Z 1

0
d� fq

1;EoM
(�, ⇠)

⇠
m

M⇠

uLF

val
(⇠)

Pval

, (47)

where uLF

val
(⇠)/Pval, normalized to 1 (cf. Eq. (33)),

approximates the integral of fq

1;EoM
(�, ⇠). The large

di↵erence between our eq(⇠) and (m/M⇠)uLF

val
(⇠)/Pval

indicates the sizable role of the gluon contribution
from the HFS generated by our dynamical model. In
addition, one should point out that the strength of
eq(⇠) is spread out on the whole range of ⇠, and not
concentrated at the end-point ⇠ = 0 as QCD investiga-
tions indicate. The latter feature leads to the singular

5

nomenological models)
Z 1

�1
d⇠

Z 1

0
d� eq(�, ⇠) =

Nc

2

Z
dpq?

Z 1

�1

dp+
q

P+

⇥

Z 1

�1

dp�
q

2

Z 1

�1

d4y

(2⇡)4
ei pq·y hP | ̄q(�

y

2 ) 1 q(
y

2 )|P i

= Nc

hP | ̄q(0) 1  q(0)|P i

2P+
, (13)

where the matrix element hP | ̄q(0) 1  q(0)|P i has to
be proportional to the pion sigma term, once a QCD
framework is adopted. As a matter of fact, one gets

Z 1

0
d⇠

Z 1

0
d� eq(�, ⇠) =

�⇡
mcur

(14)

where mcur is the quark current mass and �⇡ is
the pion sigma term, that becomes �⇡ = M/2, in
the leading order of the chiral expansion, i.e. the
Gell-Mann-Oakes-Renner relation [83]. It should be
pointed that recent LQCD calculations [84] confirm,
with high accuracy, the Gell-Mann-Oakes-Renner re-
lation in the range of the explored pion masses. In-
deed, the QCD equations of motion gives a decom-
position of the collinear PDF e(⇠) =

R
d� e(�, ⇠) in

three terms. Among them, there is a singular term
proportional to the pion sigma term, that reads (see,
e.g., Ref. [85])

esing(⇠) = �(⇠) hP | ̄q(0) 1  q(0)|P i/2P+ , (15)

while the other two terms, one is due to quark-
antiquark-gluon correlations and the other is propor-
tional to the quark mass, do not contribute to Eq. (14)
(see Ref. [85], where the issue is analyzed, taking
the nucleon as actual case). In our phenomenologi-
cal model the strength is distributed over the whole
range of ⇠ (as in Ref. [35]), without the singularity at
⇠ = 0, as it will be shown in Sect. V. Moreover, one
has for the first moment [85]

Z 1

0
d⇠

Z 1

0
d� ⇠ eq(�, ⇠) =

mcur

M
, (16)

where the singular term and the gluonic contribution
vanish, and only the term proportional to the quark
mass contributes.
From the equations of motion of a free-quark model,

one deduces the following relations between the above
uTMDs (see,e.g., Ref [35, 85, 86])

⇠ eq
EoM

(�, ⇠) = ⇠ ẽq(�, ⇠) +
m

M
fq

1;EoM
(�, ⇠)

⇠ fq?
EoM

(�, ⇠) = ⇠ f̃q?(�, ⇠) + fq

1;EoM
(�, ⇠) , (17)

where the uTMDs with a tilde are the gluonic con-
tributions. The relevant point is the dependence of
all the subleading-twist uTMDs from only the leading
one, modulo the gluonic terms. In our fully interact-
ing framework, one can anticipate that the relations
are not recovered, and rather heavily broken. For a
derivation of the first line of Eq. (17), fully consistent
with QCD, one could apply the formalism presented
in Ref. [85].

Following Eq. (10), one readily writes down charge-
symmetric and the anti-symmetric combinations for
the subleading TMDs. One has to take care how the
scalar and vector operators behave under the charge
conjugation that impose a di↵erent combination of
signs (cf. below Eq. (9)). Namely, one gets

M

P+
eS(AS)(�, ⇠) =

Nc

8(2⇡)3

Z 1

�1

dk+

2(2⇡)
�(p+

q
� ⇠P+)

⇥

Z 1

�1
dk�

Z 2⇡

0
d�k̂?

Tr
h
S�1(�pq̄)�̄(k, P ) 1 �(k, P )

± S�1(pq)�(k, P ) 1 �̄(k, P )
i
. (18)

M

P+
f?S(AS)(�, ⇠) =

NcM

8(2⇡)3�

Z 1

�1

dk+

2(2⇡)
�(p+

q
�⇠P+)

Z 1

�1
dk�

Z 2⇡

0
d�k̂?

Tr
h
S�1(�pq̄)�̄(k, P )�? �(k, P )

± S�1(pq)�(k, P )�? �̄(k, P )
i
· k? . (19)

A. The BS-amplitude and its Nakanishi integral
representation

It is useful to briefly recall some features of our ap-
proach for obtaining the actual solution of the ladder
BSE given in Eq. (6). The basic ingredient is the
NIR of the BS-amplitude (see Ref. [64] for the general
introduction, and Refs. [62, 76, 87–89] for the appli-
cation to a two-fermion case), but let us first intro-
duce the general decomposition of the BS-amplitude,
�(k;P ), for a 0� bound state, viz. [87, 90]

�(k;P ) = S1(k;P )�1(k;P ) + S2(k;P )�2(k;P )

+S3(k;P )�3(k;P ) + S4(k;P )�4(k;P ) , (20)

where �i’s are unknown scalar functions, that depend
upon the kinematical scalars at disposal (k2, k ·P and

Lorcé,  Pasquini,  Schweitzer, EPJ C 76, 415 (2016) 
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Moita, de Melo, TF,  de Paula, PRD 106, 016016 (2022)
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PION DYNAMICS & QUAK SELF ENERGY
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43
IN PROGRESS

ü BSE in Minkowski space: Quark self-energies (simple model);

ü Quark self-energies: SDE in Minkowski space &  chiral symmetry breaking;
[D. Duarte et al PRD105, 114055 (2022)]

ü Pion FF and T-even TMDs;

FUTURE

Ø T-odd TMDs, GTMDs (DGLAP&ERBL)

Ø Fragmentation Functions

Ø Dressed Quarks & Gluons, different gauges

Ø Confinement &  quark-gluon vertex 

Ø kaon, D, B, rho…, and the nucleon, 
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https://indico.in2p3.fr/event/29047/

THANK YOU!
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Schematic view: TMDs  &  PDFs 
FSI gluon exchange: T-odd

Bethe-Salpeter
Amplitude @ x+=0 

q+ = q0+q3 q- = q0-q3

q2 = q+q- - q2
T

q-→infty   
DIS 

TF & Miller PRD 50 (1994)210
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Generalized Stietjes transform and the LF  valence wave function
Carbonell, TF,  Karmanov PLB769 (2017) 418 (bosons)

UNIQUENESS OF THE NAKANISHI REPRESENTATION 

PHENOMENOLOGICAL APPLICATIONS from  the valence wf → BSA! 

Relations: LF, NIR and BS amplitude

The Nakanishi integral representation (NIR) gives the
Bethe-Salpeter amplitude c (BSA) through the weight function g;
The Light-Front projection of the BSA gives the valence light-front
wave function (LFWF) Y2;
The inverse Stieltjes transform gives g from the valence LFWF;

Carbonell, Frederico, Karmanov Phys.Lett. B769 (2017) 418-423

J. Nogueira (ITA, Brazil / ’La Sapienza’, Italy) Few-body with BSE 19 / 26

132 6. Fermion-antifermion bound state: Pion phenomenology

Moreover, in Eq. (6.1) the Dirac propagator S for a fermion of mass m reads

S(k) = i
/k + m

k2 ≠ m2 + i‘
. (6.3)

Furthermore, �̂2 = C�T
2 C and the vertex "quark-gluon" form factor F is of the form

F (k ≠ kÕ) = µ2 ≠ �2

(k ≠ kÕ)2 ≠ �2 + i‘
, (6.4)

where � is a suitable scale for giving the size of the color distribution of the interaction
vertex. It is worth mentioning that the form factor F acts as a regulator to avoid
the breakdown following from scale invariance in the ultraviolet region that also
happens in the present system, similarly to what was discussed in Sec. 5.2 for the
boson-fermion bound state.

The BS amplitude can be decomposed as

�(k, p) =
4ÿ

i=1
Si(k, p)„i(k, p), (6.5)

where each „i is a scalar function of the invariants k2, p2, k·p. The symmetry property
of the scalar functions, i.e. k æ ≠k for „i(k, p), can be straightforwardly translated
to the corresponding properties of the Nakanishi weight function, gi(“Õ, zÕ; Ÿ2), which
is associated with the exchange zÕ æ ≠zÕ. Hence, the weight functions must be even
for i = 1, 2, 4 and odd for i = 3. Moreover, the allowed Dirac structures read

S1(k, p) = “5, S2(k, p) = /p

M
“5, S3(k, p) =

Ë(k · p)
M3 /p ≠ 1

M
/k

È
“5,

S4(k, p) = i

M2 ‡µ‹pµk‹“5.
(6.6)

The NIR can subsequently be applied to each scalar functions, „i, i.e.,

„i(k, p) =
⁄ 1

≠1
dzÕ

⁄ Œ

0

gi(“Õ, zÕ; Ÿ2)
[k2 + (p · k)zÕ ≠ “Õ ≠ Ÿ2 + i‘]3 (6.7)

with Ÿ2 = m2 ≠ M2/4.
Noteworthy to mention that the Si operators of Eq. (6.6), present in the amplitude

�(k, p), together with the fermionic propagators (6.3) bring terms that produce
extra singularities, not present for the boson-boson or fermion-boson systems.

By inserting Eqs. (6.7) and (6.5) in (6.1), and subsequently performing the
light-front projection one can derive the following set of coupled integral equations
for the Nakanishi weight functions [50, 51]

⁄ Œ

0
d“Õ gi(“Õ, z; Ÿ2)

[“ + “Õ + m2z2 + (1 ≠ z2)Ÿ2]2 =

–
4ÿ

j=1

⁄ 1

≠1
dzÕ

⁄ Œ

0
d“Õ#L(ns)

ij
(“, z, “Õ, zÕ) + L(s)

ij
(“, z, “Õ, zÕ)

$
gj(“Õ, zÕ; Ÿ2),

(6.8)
 i(�, z;

2
) =

[1] T. M. Yan, Phys. Rev. D, 1780 (1973).

[2] T. Frederico, G. Salmè and M. Viviani, Phys. Rev. D 85 (2012) 036009

[3] N. Nakanishi, Prog. Theor. Phys. Suppl. 43, 1 (1969); 95, 1 (1988).

[4] N. Nakanishi, Phys. Rev. 127, 1380 (1962); Phys. Rev. 130, 1230 (1963)Graph Theory and

Feynman Integrals (Gordon and Breach, New York, 1971).

[5] T. Frederico, G. Salmè and M. Viviani, Eur. Phys. J. C 75, 398 (2015)

10

BS amplittude
valence wf



49
Generalized Stietjes transform and the LF  valence wave function II 
Carbonell, TF,  Karmanov PLB769 (2017) 418



End-point singularities– more intuitive: can be treated by the pole-dislocation method 
de Melo et al. NPA631 (1998) 574C, PLB708 (2012) 87

3

It is easily seen that the analytical integration on k� of

(8) involves integrals like

Cj =
Z 1

�1

dk�

2⇡
(k�)j S(k�, v, z, z0, �, �0

) (11)

with j = 0, 1, 2, 3, as dictated by the content in kµ

of cij(k, k00, p). For k+D 6= 0 and j  3, one can safely

close the arc at infinity, in the complex plane, and get

the non singular contribution to Lij , namely the only

part considered in Ref. [8] (i.e. Eq. (18)).

For describing a two-fermion system or for generaliz-

ing NIR to massive vector constituents, one has to fully

evaluate Cj , carefully analyzing the case when k+D = 0.

One can recognize through a simple counting rule that

the tricky powers are j = 2, 3, even if n > 3 is cho-

sen in (5). In Ref. [13], singularities appearing in the

infinite-momentum-frame quantum field theory are in-

vestigated in details, singling out the following singular

integral, suitable for our purposes,

I(�, y) =
Z 1

�1

dx
h
�x� y ⌥ i✏

i2 = ± 2⇡i �(�)h
�y ⌥ i✏

i (12)

We also need (1/2) @I(�, y)/@y, easily deduced from Eq.

(12). Then, one gets our main result (details in [12]),

namely the singular contribution to Lij , given by

LS
ij = � i

M

1

8⇡2

(µ2 � ⇤
2
)
2

2 (1� z2)

Z 1

0
dv v (1� v)

⇥
n �(z0 � z)
⇣
˜̀
D + Fv

⌘2
˜̀
D

h
a2ij(v) + (1� v)

⇣
d0ij +

M2

4
z d1ij

+
2z(� +m2

)

(1� z2)
d1ij

⌘i
+

d1ij
v

h @

@z0
�(z0 � z)

i
DS

3

o
(13)

where we used �(x)/x = �d�(x)/dx and

˜̀
D = �(1� v) (v� + µ2

)� v
h
�0

+ z2m2
+ (1� z2)2

i

DS
3 =

1

F 2
v

h Fv

`D + Fv
+ ln

⇣ `D
`D + Fv

⌘i
(14)

The derivative of the Dirac delta-function is not an issue,

since in our numerical method for solving the coupled in-

tegral equations (6), after taking into account Eqs. (7),

(13), and the non singular contribution to Lij we expand

the Nakanishi weight functions gi(�0, z.;2
) on a suitable

basis. As in Ref. [5] for two-scalar bound states, the

basis is composed by Laguerre and Gegenbauer polyno-

mials (with the needed weights). It turns out that one

can safely integrate @�(z0 � z)/@z0 by part [12], given

the smoothness of our basis and the boundary property

gi(�0, z0 = ±1;2
) = 0. Then one can obtain an eigen-

problem of the type B v = g2 A v, (with B and A suitable

matrices). In our basis, we have up to 44 Laguerre poly-

nomials (with the same parameters as in Ref. [5]) and 44

TABLE I: The squared scalar coupling constant vs the bind-

ing energy for two masses of the exchanged particle µ/m =

0.15 and µ/m = 0.50. First column: binding energy. Second

column: coupling constant g2 for µ/m = 0.15, obtained by

taking analytically into account the fermionic singularities,

(see text). Third column: results for µ/m = 0.15, from Ref.

[8] with a numerical treatment of the singularities. Fourth

column: the same as the second one, but for µ/m = 0.50.
Fifth column: the same as the third one, but for µ/m = 0.50.
Sixth column: results in Euclidean space from Ref. [10]. In

the vertex form factor it is taken ⇤ = 2, as in [8] and [10].

µ/m = 0.15 µ/m = 0.50

B/m g2dFSV (full) g2CK g2dFSV (full) g2CK g2E
0.01 7.844 7.813 25.327 25.23 -

0.02 10.040 10.05 29.487 29.49 -

0.04 13.675 13.69 36.183 36.19 36.19

0.05 15.336 15.35 39.178 39.19 39.18

0.10 23.122 23.12 52.817 52.82 -

0.20 38.324 38.32 78.259 78.25 -

0.40 71.060 71.07 130.177 130.7 130.3

0.50 88.964 86.95 157.419 157.4 157.5

1.00 187.855 - 295.61 - -

1.40 254.483 - 379.48 - -

1.80 288.31 - 421.05 - -

Gegenbauer ones, with indexes equal to 5/2, 7/2, 7/2, 7/2
for gi(�0, z.;2

) with i = 1, 2, 3, 4, respectively. Moreover,

the small quantity to be added to Aii holds ✏ = 10
�7

, and

the number of Gaussian points is 120, that becomes 180

for analyzing the case when the binding energy, in unit

of m, B/m = 2�M/m is equal to 0.01.
In the studies of BSE, it is customary to assign a value

to the binding energy B/m, and, in correspondence, look

for an eigenvalue g2. If the eigenvalue exists then the

whole procedure is validated. Tables I (scalar coupling)

and II (pseudoscalar coupling) show the comparison be-

tween the values of g2 obtained within our approach,

where the singularities have been singled out and analyt-

ically evaluated, and both (i) the calculations by Ref. [8],

where a non trivial numerical treatment of the singular

behaviors was introduced (without recognizing the pos-

sibility of a systematic analysis of the singularities as in

[13]) and (ii) the available numerical results in Euclidean

space [10], with a suitable number of digits.

Notably, we were also able to extend our calculation

up to B/m ⇠ 2, namely when the expected critical be-

havior of a �3
theory manifests itself [14], i.e. where

@B/@g2 ! 1. This is well illustrated in Fig. 1, where

the comparison between our calculations for the vector

coupling and the ones by [8] is also shown.

The achieved full agreement, within the adopted nu-

merical accuracy, strongly supports the validity of our an-

alytical method for treating the singularities that plague

5
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Viviani and L. Tomio, Phys. Lett. B 759, 131(2016).
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à Kernel with delta and its derivative!
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Ø Kernel of the LF projected pion BSE with NIR

Ø end-point singularities in the k- integration (zero-modes)



3D LF amplitudes

Dynamical observables: the LFWF components;
(B/m = 1.35, µ/m = 2.0, L/m = 1.0, mq=215 MeV): fp = 96 MeV,
Pval = 0.34
Other observables are straightforward to compute once you have
BS amplitude solution;

J. Nogueira (ITA, Brazil / ’La Sapienza’, Italy) Few-body with BSE 16 / 19

Light-front amplitudes 51

Kernel has similar magnitude with LQCD form-factor ~ 50%

21

3 4

6.1 The BSE for a 0≠ state 137

⁄QCD. The coupling constant is conveniently rescaled as

–s = g2

4fi
(1 ≠ µ2/�2)2,

where g2 is fixed through the outcome of the eigenvalue problem. The form presented
above is introduced in order to match the behavior in the infrared region [170].
Another relevant observable that can be computed is the pion decay constant,
defined as

i p2ffi = NC

⁄
d4k

(2fi)4 Tr[ /p “5 �(p, k)] , (6.20)

where NC is the number of colors. More details on the formulation of the decay
constant within the BS approach are presented in Appendix I.3. These parameters
give for the pion decay constant ffi = 96 MeV, which is very close to the experimental
value [1]. The obtained valence probability for this system is pval = 0.68. The
parameters, as well as the outcomes for pval and ffi, are summarized in Table 6.2.

Table 6.2. Input parameters for the mock pion. The last two columns show the results for
the valence probability pval and decay constant ffi.

B/m Mfi (MeV) g2 µ (MeV) �/m m (MeV) pval ffi (MeV)
1.35 140 26.718 430 1.0 215 0.68 96

6.1.2 GPD and elastic form factor

In order to access information inside hadrons, considering the quark and gluon dof,
the so-called Generalized Parton Distributions (GPDs)4 belong to the set of the
elective quantities. It can be understood as a 3D picture of the hadrons, carrying
the correlation between the transverse position and the longitudinal momentum
of partons within the hadron, giving direct access to observables like form factors
and parton distribution functions. One way of understanding the GPDs is as the
o�-shell parton-hadron scattering amplitude projected onto the LF, which reads [171].
Schematically, one has

H(x, ›, t) = 1
2

⁄
dk+d2k‹”

A

x ≠ k+

P +

B ⁄
dk≠A(k), (6.21)

with
A(k) =

⁄
d4zeik·z ÈP + �

2 |T
5
Â̄(≠z

2)“+Â(z

2)
6

|P ≠ �
2 Í , (6.22)

where the light-cone gauge is considered, P is the momentum average of the hadron
between the incoming and outgoing states, � is the transfered momentum and T is

4Worth pointing out that the Transverse Momentum Distributions (TMDs) are the relevant
quantities for focusing on the momentum distributions. Their calculation will be done in a future
study.
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Figure 2: Left: The valence, nonvalence and total EM form factors as functions of Q2. Right: Ratio of the
valence to the covariant form factor. Model VII.

panel of the figure, the approximate asymptotic expression for the valence form factor (22) is
compared to the valence one, and it gives an error of about 20%, such approximate expression
should be distinguished of the QCD asymptotic formula, that is derived by considering the one
gluon exchange contribution to the kernel, while we have not done that. Our formulation aimed
only to reveal how the asymptotics is formed from the z or ⇠ integration of the form factor, as
will be detailed next.

 0.0001

 0.001

 0.01

 0.1

 1

 0  10  20  30  40  50  60  70

|F
v
a

l(
Q

2
)|

Q2/GeV2

|Fval(Q
2)|

|F↑ ↓
val(Q

2)|

|F↑ ↑
val(Q

2)|

 0.001

 0.01

 0.1

 1

 0  10  20  30  40  50  60  70

F
va

l(
Q

2
)

Q2/GeV2

Fval(Q
2), exact formula

Fval(Q
2), asymptotic formula

Figure 3: Left: Comparison of the anti-parallel and parallel contributions to the valence form factor vs Q2.
Right: Asymptotic expression for the valence form factor compared to the valence one.

The z-dependencies of the valence form factor, approximate asymptotic formula, and full
form factor are presented in Fig. 4, where we have plotted F̃ (Q2

, z) with F (Q2) =
R 1

�1 dzF̃ (Q2
, z)

for each of the three cases. As we have anticipated, the formation of the asymptotic follows for
the region close to z = 1 from the competition of the small values of the product (1� z)Q2 and
the damping of the wave function and distribution amplitude at the end points. The peak seen
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in the figure for the valence contribution and the approximate expression put in evidence the
known close relation between the end-point behavior and the large momentum behavior of the
pion form factor. The support of the bump is ⇠ Q

�2. In the left panel the plot of F̃ (Q2
, z) for

the full form factor, which endorses the dominance of the end-point region for the asymptotic
of the form factor, although tempting, we cannot simply identify the dependence in z obtained
for the full form factor with the valence one.

Summary. We developed a fully Minkowski space four-dimensional calculation of the pion
electromagnetic form factor in a dynamical model, with ingredients inspired by the infrared
properties of QCD. It is important to stress that the model has limitations and the kernel has
to be improved to take into account the dressings of the quarks, gluon and quark-gluon vertex
function, even in ladder approximation. However, e↵ectively the parameters inspired by LQCD
takes into account most of the IR properties, once they are fine tuned to reproduce the experi-
mental decay constant. That provides a very realistic charge radius of 0.663 fm compared with
0.657±0.003 fm [34], and allowed to predict both the valence and non-valence radii of 0.71 fm
and 0.54 fm, respectively. We emphasize that the valence probability is about 70% and the
remaining probability is associated with the occupancy of states with a quark-antiquark pair
and any number of gluons. We found quantitatively, but as expected, that the quark-antiquark
pair in the higher Fock-components of the pion LF wave function are considerably more com-
pact (25%) than the valence configuration. The spin anti-parallel configuration dominates the
valence form factor, by 80% at low momentum transfers and decreasing to 10% or less at
Q

2 ⇠ 70GeV2, it is noticeable the persistence of the subleading parallel spin contribution to
the valence form factor. The experimental form factor is reasonable well reproduced, while the
valence contribution exhausts 90% of the form factor only above Q

2 ⇠ 80GeV2, which is also
a good guess for the asymptotic behavior dominance confirmed by the QCD formula compared
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Asymptotic valence form factor. First the change in integration variable from ~k? ! ~k
0
? is

done in Eq. (15), that gives:

F val(Q
2) =

Nc
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i
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00, z)

�
,

(21)

where instead of the modulus of transverse momenta it is used the � variables, then performing
the limit of Q ! 1, one gets:

Fval(Q
2)|Q2!1 ⇠ Nc

16⇡2

Z 1

�1

dz  "#

✓
(1� z)2

4
Q

2
, z

◆ Z 1

0

d�  "#(�, z) , (22)

where the contribution of the parallel spin wave function is subleading with respect to the
antiparallel one. A nice feature of the approximate formula is that one can understand the
origin of the asymptotic form factor, where essentially the integral in z receives contributions
for large Q’s, concentrated close to z = 1 or ⇠ = 0, from the competition of the wave function
dependence in � = |~k?|2, that prefers small arguments for (1�z)2

4 Q
2 and the damping of the wave

function at the end-points. This will be illustrated when presenting our results. The integral
over � of the spin antiparallel wave function, is the distribution amplitude, with normalization
following from the valence probability.

Model parameters. In the present work Eq. (6) was solved for the coupling strength g
2 and

the Nakanishi weight functions gi(�, z) by using a bi-orthogonal basis, i.e. Laguerre polynomials
for the non-compact variable (�) and Gegenbauer polynomials for the compact one (z). For
more details on the numerical method, see e.g. Ref. [28]. As inputs were used the binding
energy B, the exchanged mass µ and the scaling parameter ⇤. The di↵erent parameter sets
considered in this work are listed in Table 1 and correspond to values of f⇡ in the range 77�130
MeV. The gluon mass µ is chosen to be between 30 to 660 MeV, and the latter value chosen
to encompass LQCD results for the dressing function in the IR region (Landau gauge) [22].
The constituent quark mass around 250 MeV to be close to the IR value of the running mass
in LQCD [33]. The form factor parameter is around ⇤QCD [20] while the coupling constant is
obtained by fitting the binding energy of the pion.

The nonvalence probability has a close correlation with the values of the dimensionless ratio
f⇡/m that is associated in the valence wave function at the origin. As it decreases the valence
probability Pval decreases and the probability to populate higher Fock-components increases.
One should note that higher Fock components of the wave function are states with higher
virtuality and therefore more compact, as our extraction of the pion valence and nonvalence
charge radius confirms. It will be discussed in what follows.

Pion valence and nonvalence charge radius. For some particular cases, we computed the
valence charge and nonvalence radii as given in Table 1. To obtain the nonvalence contribution
to the pion radius, namely the contribution of the higher Fock-components of the pion LF wave
function, we used that:

r
2
⇡ = Pval r

2
val + (1� Pval) r

2
nval ,

7

Valence form factor

Asymp. form factor

where the higher Fock state contributions to the form factor are summed up in the nonvalence
form factor, with Fnval(0) = 1 � Pval for its normalization. Therefore, once we are able to
compute the valence contribution to the form factor, the nonvalence part of the form factor
can be obtained by using (14), and the role of higher Fock-components in composing the form
factor can be accessed, as for example, the nonvalence charge radius.

Valence electromagnetic form factor. The valence contribution to the pion electromagnetic
form factor at a given momentum transfer Q2 can be written as [30] (see also [31, 32]):

F val(Q
2) =

Nc

16⇡3

Z
d
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dz

h
 

⇤
"#(�

0
, z) "#(�

00
, z) +

~k
0
? · ~k00

?
k
0
?k

00
?
 

⇤
""(�

0
, z) ""(�

00
, z)

i
, (15)

where Q
2 = |~q?|2, � = |~k?|2, �0 = |~k0

?|2, �00 = |~k00
?|2,

~k
0
? = ~k? +

1
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00
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4
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Q

2 and ~k? · ~q? = |~k?||~q?| cos ✓ .
(16)

In Eq. (15) the antiparallel spin component ( "#), and the parallel one ( ""), are given by
[24]
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with

 i(�, z) = �
Z 1

0

d�
0

M

gi(�0, z)

[� + �0 +m2z2 + (1� z2)2]2
. (18)

The decay constant is obtained from the spin antiparallel valence pion wave function, and
using the plus component of the axial-current as:

f⇡ = �i
Nc

p+

Z
d
4
k

(2⇡)4
Tr[ �+ �5 �(p, k)] =

2Nc

M

Z
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(2⇡)2
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+

2⇡
 "#(�, z) , (19)

with k
+ = p

+
z/2 (p+ = M), and where we have used that d4k = 1

2d
2
k?dk

+
dk

� and introduced
Eq. (17) for the antiparallel spin component. On the other side the decay constant can be also
written in the form:

f⇡ = � Nc
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Z 1
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d�
0
Z 1

�1
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Z 1

0
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, (20)

where the contribution of g3 from the valence wave function is exactly canceled.
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where the contribution of g3 from the valence wave function is exactly canceled.
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nou, K. Hadjiyiannakou, G. Koutsou, and C. Lauer
(ETM), Pion and kaon hx3i from lattice QCD and
PDF reconstruction from Mellin moments, Phys. Rev.
D 104, 054504 (2021), arXiv:2104.02247 [hep-lat].

[11] W. de Paula, E. Ydrefors, J. Alvarenga Nogueira,
T. Frederico, and G. Salmè, Observing the
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Figure 4.3: Unified coupling obtained from the analytic matching of nonperturbative and
perturbative QCD regimes. The procedure determines the relation between ⇤MS and  or
equivalently hadron masses. The transition scale Q0 between the large and short-distance
regimes of QCD is determined as well.

in good agreement with the determination from the value  = 0.50±0.04 obtained from

the relation between  and hadron masses:  = M⇢/
p
2 or  = Mp/2 [130]. It is remark-

able that the parameter  which fits the Bjorken sum rule data is set independently by

a hadron mass.

Additionally, it has been shown using the Schwinger–Dyson equations for the quark

propagator that if one assumes a Gaussian form for the QCD running coupling, the quark

propagator has poles above and below the real axis, consistent with quark confinement

[207]. Finally, the scaling solution of the Schwinger–Dyson equations yields a coupling

in close agreement with ↵AdS, with a freezing value of 2.97 (Section 4.4).
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Gerasimov–Drell–Hearn (GDH) sum rule [178, 189] for Q2
! 0, and the Bjorken sum

rule [37] for Q2
! 1. Let us first consider the latter. At large Q2, the rhs of Eq. (3.40)

can be computed. Equating it to the rhs of Eq. (3.41) yields the result:

↵g1 = ↵MS + 3.58
↵2

MS

⇡
+ 20.21

↵3

MS

⇡2
+ 175.7

↵4

MS

⇡3
+O

�
↵5

MS

�
, (4.1)

which is indicated by the blue band shown in Fig. 4.1. The width of the band represents

the uncertainties due to the value of ⇤MS, the truncation of the Bjorken series in Eq.

(4.1), and the truncation of the � series used to compute ↵MS in Eq. (4.1). At the

smallest Q2 typically considered for the applicability of pQCD, Q2

min & 1 GeV2, the

asymptotic series (4.1) converges up to order n ⇠ ⇡/↵MS(Q
2

min) ' 4 so one should stop

at this order, lest 175.7↵4

MS
/⇡3 becomes comparable to O

�
↵5

MS

�
.

0

0.2

0.4

0.6

0.8

1

10
-1

1 10

Q (GeV)

!
g
1
(Q

)/
"

Bjorken sum rule constraint

AdS/QCD

!
g1

/" Hall A/CLAS

!
g1

/" JLab CLAS (2008)

!
g1

/" JLab CLAS (2014)

!
g1(#)

/" OPAL

!
F3

/"

!
g1

/" DESY HERMES

!
g1

/" CERN COMPASS

!
g1

/" SLAC E142/E143

!
g1

/" SLAC E154/E155

!
g1

/" JLab RSS

!
g1

/" CERN SMC

GDH limit

Figure 4.1: Experimental data and sum rule constraints for the e↵ective charges ↵g1(Q)/⇡
and ↵F3(Q)/⇡. The blue data points are from Jlab [190], the green points are from Hermes
[183], the black points are from Fermilab [78], the red points are from CERN [186] and the
magenta points are from SLAC [179, 181, 182, 184].

As an alternative to Eq. (4.1), one can use the BLM/PMC expression (see Section

3.7.1 and Eq. (3.43)) for ↵g1(Q
2) in terms of ↵MS(Q

2) [51]. In this case all nonzero

� terms are shifted into the scales Q⇤, Q⇤⇤, · · · of the ↵MS coupling thus matching

64

6

[1] A. C. Aguilar et al., Pion and Kaon Structure at the
Electron-Ion Collider, Eur. Phys. J. A 55, 190 (2019),
arXiv:1907.08218 [nucl-ex].

[2] A. Accardi et al., Electron Ion Collider: The Next
QCD Frontier: Understanding the glue that binds us
all, Eur. Phys. J. A 52, 268 (2016), arXiv:1212.1701
[nucl-ex].

[3] D. P. Anderle et al., Electron-ion collider in
China, Front. Phys. (Beijing) 16, 64701 (2021),
arXiv:2102.09222 [nucl-ex].

[4] E. E. Salpeter and H. A. Bethe, A Relativistic Equa-
tion for Bound-State Problems, Phys. Rev. 84, 1232
(1951).

[5] Z. F. Cui, M. Ding, J. M. Morgado, K. Raya, D. Bi-
nosi, L. Chang, J. Papavassiliou, C. D. Roberts,
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R. Pimentel, Fermionic bound states in Minkowski-
space: Light-cone singularities and structure, Eur.
Phys. Jou. C 77, 764 (2017), arXiv:1707.06946 [hep-
ph].

[16] S. Mandelstam, Dynamical variables in the Bethe-
Salpeter formalism, Proc. Roy. Soc. Lond. A 233, 248
(1955).

[17] J. Alvarenga Nogueira, C.-R. Ji, E. Ydrefors, and
T. Frederico, Color-suppression of non-planar dia-
grams in bosonic bound states, Phys. Lett. B 777,
207 (2018), arXiv:1710.04398 [hep-th].

[18] C. H. Llewellyn-Smith, A relativistic formulation for
the quark model for mesons, Annals Phys. 53, 521
(1969).

[19] J. Carbonell and V. A. Karmanov, Solving
Bethe-Salpeter equation for two fermions in
Minkowski space, Eur. Phys. J. A 46, 387 (2010),
arXiv:1010.4640 [hep-ph].

[20] D. Dudal, O. Oliveira, and P. J. Silva, Källén-
Lehmann spectroscopy for (un)physical degrees
of freedom, Phys. Rev. D 89, 014010 (2014),
arXiv:1310.4069 [hep-lat].

[21] E. Rojas, J. P. B. C. de Melo, B. El-Bennich,
O. Oliveira, and T. Frederico, On the Quark-Gluon
Vertex and Quark-Ghost Kernel: combining Lattice
Simulations with Dyson-Schwinger equations, JHEP
10, 193, arXiv:1306.3022 [hep-ph].

[22] O. Oliveira, T. Frederico, and W. de Paula, The
soft-gluon limit and the infrared enhancement of the
quark-gluon vertex, Eur. Phys. J. C 80, 484 (2020),
arXiv:2006.04982 [hep-ph].

[23] P. A. Zyla et al. (Particle Data Group), Review of
Particle Physics, PTEP 2020, 083C01 (2020).
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Ref. [12] for the pion electromagnetic form factor),
that heuristically amounts to use a dressed quark-pion
vertex (related to the BS amplitude after multiplying
by the fermion propagators), the expression for the
uTMD is given by (see Ref. [27])

f1(�, ⇠) =
1
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Notice that f1 in Eq. (8) is automatically normal-
ized to 1, once the BS amplitude is normalized (cfr.
Refs. [11] and [24]), and that the explicit expression
of Eq. (8) in terms of the NWFS is given in Ref. [27].
In summary, our calculation of the PDF is carried

out by using in Eq. (7) the result of Eq. (8) with the
BS amplitude evaluated through Eqs. (5) and (3). The
di↵erent gauges in Eq. (6) and in the BSE kernel (at
the present stage) raises the question of the relevance
of the Wilson line in Eq. (6), that reduces to the iden-
tity in the light-cone gauge. The non trivial challenge
of adopting a gluon propagator in the light-cone gauge
will be faced with elsewhere, but one could reliably
surmise a small e↵ect after comparing our result with
the one in Ref. [7], where a Landau gauge has been
adopted (see Fig. 3 for comparison, modulo the very
sharp di↵erences in the approaches).
Beside the full PDF, for a more deep analysis we

have calculated the LF valence contribution. Within
the LF quantum-field theory illustrated in Refs. [29,
30], one defines the creation and annihilation oper-
ators for particles and antiparticles, with arbitrary
spin, onto the null-plane. Then, the generic LF Fock
state is built and, assuming a tiny mass for the gluon,
one can meaningfully expand the hadron wave func-
tion (WF) by using the complete Fock basis and diag-
onalize the LF Hamiltonian (see Ref. [31]). The state
with the smallest number of constituents (or with the
lowest number of creation operators applied to the
vacuum) is the valence one, and we call LF valence
WF the corresponding amplitude. Notice that in the
literature (see, e.g., Ref. [5] where a detailed analysis
of the issue is presented and a wealth of related refer-
ences are given) a di↵erent terminology is adopted,
by indicating as valence WF the full LF-projected

BS amplitude, emphasizing in this way the number
of fermionic fields, dressed by QCD interactions, that
are present in the definition of the BS amplitude itself.

The Fock expansion of the pion state is a very useful
tool, since one can recover a probabilistic framework,
inapplicable to the BS amplitude. In fact, summing
up the square modulus of each amplitude present in
the Fock expansion, we obtain 1, if the pion state is
normalized. With this in mind, one can write the
contribution to the PDF from the LF-valence WF as
follows (see details in Ref. [11])

uval(⇠) =

Z 1

0

d�

(4⇡)2

h
| "#(�, z)|2+ | ""(�, z)|2

i
, (9)

where z = 1� 2⇠,  "#(�, z) is the anti-aligned compo-
nent of the LF-valence WF and  ""(�, z) the aligned
one (of purely relativistic nature). The probability of
the LF-valence WF reads

Pval =

Z 1

�1
dz

Z 1

0
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i
.
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In the actual calculation, for the set of three param-
eters we used, one has Pval = 0.7 [11]. The obtained
value of Pval indicates that 30% of the normalization
comes from states that contain one, two, ... infinite
gluons (given by the iteration of the ladder kernel).

Results. The full PDF and its LF-valence contri-
bution, obtained from the BSE evaluated through the
NIR approach and adopting the previously mentioned
input parameters, are shown in Fig. 1, at the initial
scale Q0 = 360 MeV. This key value for Q0 is fixed in
agreement to the analysis of the running coupling that
allows us to assign a hadronic scale from the inflection
point of the QCD e↵ective charge as a function of Q2

(see Refs. [5], where Q0 = 0.330 ± 0.030 GeV was
adopted, and also [6]).

Some comments on the results in Fig. 1 are in or-
der: i) the symmetry of the PDFs, with respect to
⇠ = 0.5, is entailed by the charge symmetry, that in
turn leads to the expression of the uTDM in the Man-
delstam approach given by Eq. (8); ii) for ⇠ ! 1,
the amplitude of the lowest Fock state generates a
contribution that completely saturates u(⇠); iii) while
the full PDF is normalized to 1, as it necessarily fol-
lows from the standard normalization of the BS am-
plitude [11, 24], the valence contribution has norm
Pval = 0.7; iv) the 30% depletion is due to the pres-
ence of the higher Fock-components in the pion state.
Let us remind that the two spin configurations of the


