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Motivations and tools

@ To achieve a fully covariant description for a two-fermion system, in
Minkowski space, through the non perturbative framework yielded by
the Bethe-Salpeter equation (BSE)

- Hadrons, Light Nuclei, 2D materiais (Graphene)...

@ To determine from the BS amplitude, directly in Minkowski space, the
relevant momentum distributions

@ The fermionic nature of the constituents is suitably managed within
the Light-front (LF) framework, making more simple the numerical
calculations

o Nakanishi Integral Representation (NIR) of the BS amplitude

Recall: Euclidean non perturbative approaches in field theory: lattice and
continuum frameworks Dyson-Schwinger...
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The BSE in a nutshell

The 4-point Green's Function,

G(x1, %25 y1,¥2) =< 0| T{p1(x1)d2(x2) @7 (y1)¢5 (y2)} [0 > |

fulfills an integral equation G = Gy + Gy Z G

All | the expected contributions from
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Insert a complete Fock basis in

G(x1, x2; 1, y2) =< 0] T{¢1(x1)d2(x2) 97 (v1)¢3 (v2)} 10 >

then in the Fourier space, the bound state contribution (assuming only one
non degenerate bound state for the sake of simplicity) appears as a pole,
i.e.

i ¢(kipg) ¢(k; ps)
27)~4 2wg(po — wp + i€)

Gg(k,q; pg) ~ (

o wB:,/M§+|p|2

o ¢(k;pg) = Bethe-Salpeter Amplitude, in momentum space

@ In configuration space,
Bethe-Salpeter Amplitude — (0| T{¢1(x1)d2(x2)}|p& )
B = further quantum numbers

(NPQCD16, Oct 17-21, 2016 ) BSE in Minkowski space 6 /34



Close to the bound-state pole py — wg

G ~ Gg + regular terms

= BS Equation

The integral equation determining the BS amplitude for a bound sys.

¢(k; pg; B) = Go(k: pg, B) /d4q’ Z(k.q'; ps) ¢(q"; P, B)
To simplify, nor self-energy neither vertex corrections, (at the present
stage). For a two-scalar sys. the free-propagator is

] i
(BB +k2—m2+ie (B2 —k)2—m?+ie

Go =

N.B. Z(k,q’; pg), the irreducible kernel in BSE, is the same one meets in

G=G+G ZG
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Feynman parametric integrals

In the sixties, Nakanishi (PR 130, 1230 (1963)) proposed an integral
representation of N-leg transition amplitudes, based on the parametric
formula for the Feynman diagrams.

N N

1 1
In a scalar theory, for V external legs, a generic contribution to the

transition amplitude is given by

k
’ 1
fg(PlaP% "'7pN) X / d4qr
1L} 4 ez @—m)

where one has n propagators and k loops (= number of integration
variables).
The label G — (n, k)
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Nakanishi Perturbative-theory Integral Rep.(PTIR) - |

T # - -
: ~ Nakanishi proposal for a compact and elegant expression
Ged)

of the full N-leg amplitude fy(s) = >, fg(s)

Introducing the identity

liH/OldzMS(zh—né’)/oood'y§<’y—zalﬁm’2>

/
with 8 =Y n;(&@) and integrating by parts n — 2k — 1 times

— > h2n) $6(2,7)
fg(s) H/ dzh/ dv hZhZhSh)

g{?g(z,y) = proper function; s = {s,} scalars from the ext. momenta

The dependence upon the details of the diagram, (n, k), moves from the

denominator — the numerator!! The SAME formal expression for the
denominator of ANY diagram G appears
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Nakanishi PTIR - I

The full N-leg transition amplitude can be formally written as

ZhZh) on(z,7)
Z f5(s) o H/ dz,,/ d’y S

where

z,9) =Y d(z,7)
g

Within the BS framework, but using different kinematical variables, such
an elegant expression can be exploited for obtaining

@ the 3-leg transition amplitude (vertex function — bound-state BS
amplitude) (Kusaka et al, PRD 56 (1997), Carbonell-Karmanov EPJA
27 (2006) 1, FSV PRD 89 (2014) 016010)

@ the 4-leg one (off-shell or half-off-shell T-matrix — scattering-state
BS amplitude) (FSV, PRD 85 (2012) 036009)
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NIR: Vertex function for a scalar theory (fermions — spinor indexes)

f(s) = /01 . /0°° o 93(2,7)

7—%2—k2—zk-p—ie

with p = p1 + p2 and k = (p1 — p2)/2
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QUESTION:
Can (NIR) of the vertex function I', elaborated within perturbation theory,

be used in a non perturbative realm, as the BS framework does?
ANSWER:

@ Feynman Diagram framework = Nakanishi PTIR

[ = Al Feynman Graph = NIR

o Following the Bethe-Salpeter original work (PR 84 (1951) 1232): I
can be obtained by a inhomogeneous integral equation (a non
perturbative tool) with a kernel obtained from an infinite subset (the
irreducible diagrams) of the graphs to be taken into account by
Nakanishi, and iterating.

@ The answer is : YES. NIR and BSE, with an analytical kernel,
represent the same I'.
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Projecting BSE onto the LF hyper-plane x™ =

@ NIR contains some hidden freedom, once the weight function is taken
as an unknown quantity.

o It is tempting to extend NIR to a non perturbative regime, needed for
actually describing a bound state. Look for a dynamical equation to
be fulfilled by the vertex function: the Bethe-Salpeter equation !

@ Big Value: assuming an expression a la Nakanishi for the BS
amplitude, then its analytic structure is displayed in full

@ Within the non explicitly covariant LF framework the valence
component for two scalars: integrating on k— the BS amplitude)

BS Amplitude

na(E K1) = % (1 ff)/%¢b(k,p):

1 < g(7',1 =26 K%)
_ 1— d
ﬁg( 5)/0 7 [V + K + K2+ (26 — 1)° 2 — je2

NIR
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Light-Front Time Evolution

~ 4 o
D(x, p) = 1(571;4 e* Dk, p)

Py — Py

puzp';‘+pé‘ ket = 5

D(x, p) = OIT{@u(x"/2) @y (—x*/2)} p)
= 0(x ) O0l@(F/2)e P ¥ Pp(—=x/2)|phel? ¥4+ o o o

= 0(c) Y e 40l p(&/2)ln Xn!le™ ™ 2 |n)(nl o(—%/2)| p) +

n,n' o o o

.CL'+ = O only valence state remains! How to rebuilt the full BS amplitude?

Iterated Resolvents: Brodsky, Pauli, and Pinsky, Phys. Rep. 301, 299 (1998)
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BS amplitude from the valence LF wave function: sketch
@ Quasi-Potential approach for the LF projection (3D equations);

@ Derivation of an effective Mass-squared operator acting on the
valence wave function;

@ The effective interaction is expanded perturbatively in
correspondence with the Fock-content of the intermediate states;

@ [(p) reverse LF-time operator: computed perturbatively

Reverse operation: valence wave function = BS amplitude

(W) = N(p) [¢rF)

Sales, et al. PRC61, 044003 (2000); PRC63, 064003 (2001); Frederico et al. NPA737,
260c (2004); Marinho et al., PRD 76, 096001 (2007); Marinho et al. PRD77, 116010
(2008); Frederico and Salmé, FBS49, 163 (2011).

(NPQCD16, Oct 17-21, 2016 ) BSE in Minkowski space

15 / 34



Example:Bosonic Yukawa model
Ly = gsdld10 + gsdhpoo

w® = = +
w2 — Y A
= +
LF time
-/ —1
D : } T } Jo — W
Mass? eigenvalue eq. & valence wf: g(K,\)_1 ’¢A> =

(NPQCD16, Oct 17-21, 2016 ) BSE in Minkowski space



LF projection of the homogeneous BSE: two-boson system

(k. p) = Go(k. p) / K Kas(k, k', p) O(K', p)

/°°d ’ g(7', zi k%) _
L L (R Py

oo 1
=/ dv// dz' Vi' (v, 2,7, 2))en(+, 2’ k7).
0 —1
with VP (y, 2,4/, 2') determined by the irreducible kernel Z(k, K, p) !

Ladder approx. by Carbonell and Karmanov within the explicitly-covariant
LF framework (EPJA 27 (2006) 1 (also x-ladder in EPJA 27 (2006) 11).
FSV PRD 89 (2014) 016010, non explicitly covariant version.

Very good agreement for both eigenvalues (the coupling constants at
given binding energies) and LF distributions.

Wide phenomenology: (i) Scattering lengths in FVS EPJC 75 (2015) 398,
(ii) spectra of excited states and LF momentum distributions in Gutierrez
et al PLB 759 (2016) 131.
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Numerical method

Qg, }/’Z’ ZZAijf )

=0 j=0

(2045/2)(20) 52
20 +5) Rl
even Gegenbauer polynomials

Gu(2)=4(1-2)T(5/2)

Li(y) = VaLj(ay)e

Laguerre polynomials

Solution of the eigenvalue problem for ¢? for each given B

B=2m-M binding energy
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Two-Boson System: ground-state

Building a solvable model...

Nakanishi weight function
3+1 n=1

Valence wave function

LADDER KERNEL

3+1 n=1

P,

Wim=0.50

gbxy.z.xl)/gbr().ﬂ.»\:y

Wim=0.50

L
-1 05

Karmanov, Carbonell, EPJA 27, 1 (2006)
Frederico, Salmé, Viviani PRD89, 016010 (2014)
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Two-Boson System: Spectrum and BSE

134 C. Gutierrez et al. / Physics Letters B 759 (2016) 131-137
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Fig. 2. The valence wave functions vs & with fixed values of (k. /m)?, for the first (left panel) and second (right panel) excited states, with B(1)/m =0.22 and B(2)/m=0.05,

respectively, obtained from (10) with j¢/m =0.1 and & = 6.437.
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Fig. 3. The valence wave functions vs (k. /m)? with fixed values of &, for the first (left panel) and second (right panel) excited states, with B(1)/m =0.22 and B(2)/m = 0.05,
respectively, obtained from (10) with j¢/m=0.1 and & =6.437.
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Fig.4. The asymptotic k; behaviors of the first (left frame) and second (right frame) excited states are shown, using the same label convention as given in Fig. 3.
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Transverse distribution: Euclidean and Minkowski

1
olk)) = / dk%dik> @ (k, p) = 5 / dk*dk~ @ (k, p) and

¢E(kJ_)Ei/dk%dk3¢5(l<5,p),

136 C. Gutierrez et al. / Physics Letters B 759 (2016) 131-137
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061 o 05l H
FA —~ B)=022m¢L | - L —— B()=00082m, 0}, | |
SIS ol - ¢ 04 r
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> [ 4 1=
B § o i
o2~ |
= ] J
: \X kA LA
L \ .“.A“ 4 L 4
A
02— P — 02 =
" I 1 I Il I 1 n
0 2 3 0 1
k/m

Fig. 6. Transverse momentum amplitudes s-wave states, in Euclidean and Minkowski spaces, vs k. for both ground- and first-excited states, and two values of j/m and agr
T T

(as indicated in the insets). The amplitudes ¢} and ¢y, arbitrarily normalized to 1 at the origin, are not easily distinguishable.
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(1) Valence LF wave function in impact parameter space

Miller ARNPS 60 (2010) 25 F(Q?) = f dsz(b) e—ibaL

p(b) = pya(b) + higher Fock states densities - - -

1
. 1 d& B 2
Pval(b) = Eb/ m lp(&,b/(1—£))]

2
» Burkardt IJMPA 18 (2003) 173 ¢ (&, b) = % (&, kel
s(E=¢)
,b)= F(g,b
¢ (&,b) = (¢.b)

r i gy’ 1-2¢?)
F(E,b)—/dyjo(bﬁ)!dy [y +y +Kk2+(1/2 — £)2M2]2
0
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(II) Valence LF wave function in impact parameter space

F(£, D)oo — € DVIPHET/22M2 £ p)

Fig. 7. The valence functions f(&.b) in the impact parameter space. Left panel: the ground state, corresponding to B(0) =1.9m, st =0.1m and ag = 6.437. Right panel:
first-excited state, corresponding to B(1) =0.22m, st =0.1m and &g, =6.437.
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Spin dof and BSE

A two-fermion system, interacting in ladder approx. through

@ a massive scalar
g2

R (RO TR

@ .a massive pseudoscalar
2
g

s = k= wRrE— 21

@ a massless vector )
o — g g"
[(k — K')? + i€]

as in Carbonell & Karmanov EPJA 46 (2010) 387. N.B. a form factor
F(K — k") at each vertex
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BSE for fermions

®(k,p) = S(p/2+k) /d“k’ F2(k—K")iK(k, K'\T1 &(K',p) T2 S(k—p/2)

_fEm Flk— k)= — (2= 1)
g2 —m2+ie ’

S(q)=1i [(k—Kk')2— A2+ i€]

m

I =Ty =1 (scalar), 75 (pseudo), ~" (vector)

(D(k’p) - 51 ¢1(k7p) + 52 ¢2(kap) =+ 53 ¢3(k’p) + 54 ¢4(k7p)

¢; = unknown scalar functions, with well-defined symmetry under the
exchange 1 — 2, from the symmetry of both ®(k, p) ans §;.
NIR applied to ¢; !!

TF{S,' SJ} = M 5,1 with

k
S1 =75, 52=£ S = sz

ky,
VR k% S = MU “puky s
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LF projection = integral-equation system
Y For each ¢;, apply NIR

dk™ i ’ g(v,z K%
n2) = [ L gitkp)=—L | d
vi(r,2) /27r ¢i(k. p) M Jq ’y[’y+’y’+m222—|—(1—22).‘£2—i6]2

@ y=lk.[?€[0,00] and z=2x — 1 € [-1,1]
@ k*=4m? — M? with M = 2m — B.(B = binding energy).
% % The coupled-equation system

1 00
Yi(y,z) = g° Z /1 dz’/0 dy' gi(v', 2 K2) Lij(v,z,7',2'; p)
I _

e gj(7/,Z/; k*) are Nakanishi weights, eigenvectors of the
integral-equation system.

@ For actual calculations, a suitable basis Laguerre(y) x Gegenbauer(z).

@ The kernel Ljj(,z,~',Z; p) contains singular contributions produced
by integrating on k~ the combination of the numerator of the
fermionic propagators and the operators S; in ®(k, p).
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The non explicitly covariant LF framework allows one, in a straightforward
way, to single out the singular contributions to ;.

> dk~

?(ki)J S(k77 V7Z7Z/7,77,7/)

For two — fermion BSE : C; = /

— 00

with j =1,2,3 and S(k—,v,z,2',v,7") explicitly calculable

N.B., in the worst case

S(k—,v,z,2,7,7) ~ for k= — o0

1
(k=]
Then, one cannot close the arc at the oo for carrying out the needed
analytic integration, but has to deal with singular behaviour, i.e. §(x)

The severity of the singularities, i.e. the power j, does not depend upon
the complexity of the kernel.
% % The general rule says:
look at the constituent propagators and the structure of the BS amplitude,
only
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In the 70's, Yan et al studied the field theory in the Infinite Momentum
frame,

The singular k~-integration involved in the investigation was one of the
issues to be faced with.

Yan discussed (PRD 7 (1973) 1780) a singular integral like

e i)
=] PEETNELT

% In the fermionic BSE case, one can rigorously evaluate the singular
integrals by applying the Yan result and some simple extension, leading to
derivative of the delta-functions (recall that we are using a basis, infinitely
derivable, )

Differently, in the explicit covariant LF framework, the singular behavior of
the relevant integrals was pragmatically healed by introducing a suitable
smoothing function (Carbonell & Karmanov EPJA 46, 387 (2010)).
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Numerical comparison: Scalar coupling

\ u/m=10.15 | ] u/m =050

B/m | girsy(full) gex arsv (full) gix gt
0.01 7.844 7.813 25.327 25.23 -
0.02 10.040 10.05 29.487 29.49 -
0.04 13.675 13.69 36.183 36.19 36.19
0.05 15.336 15.35 39.178 39.19 39.18
0.10 23.122 23.12 52.817 52.82 -
0.20 38.324 38.32 78.259 78.25 -
0.40 71.060 71.07 130.177 130.7 130.3
0.50 88.964 86.95 157.419 157.4 157.5
1.00 187.855 - 295.61 - -
1.40 254.483 - 379.48 - -
1.80 288.31 - 421.05 - -

First column: binding energy.

Red digits: coupling constant g2 for ;1/m = 0.15 and 0.50, with the
analytical treatment of the fermionic singularities (present work). -

Black digits: results for /m = 0.15 and 0.50, with a numerical treatment
of the singularities (Carbonell & Karmanov EPJA 46, (2010) 387).

Blue digits: results in Euclidean space from Dorkin et al FBS. 42 (2008) 1.
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Numerical comparison: Pseudo-Scalar coupling

\ u/m=0.15 u/m=0.50 \
B/m gstv(fU”) g(z.‘K gngv (full) géK
0.01 225.7 224.8 422.6 422.3
0.02 233.2 232.9 430.5 430.1
0.04 243.1 2431 440.9 440.4
0.05 247.1 247.0 4449 4443
0.10 262.1 262.1 460.4 459.9
0.20 282.9 282.9 482.1 480.7
0.40 311.7 311.8 513.3 515.2
0.50 322.9 323.1 525.8 525.9
1.00 362.3 - 570.9 -
1.40 380.1 - 591.8 -
1.80 388.7 - 602.1 -
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Numerical comparison: Vector coupling

0.8

Full dots: g2 from Carbonell & Karmanov EPJA 46, (2010) 387, with a
numerical treatment of the singularities.

N.B. A critical value gt is clearly approached for B/m — 2 (cf G. Baym
PR 117 (1960) 886)
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Vector coupling and high-momentum tails: v = |k, |?

LF amplitudes 1); times

0.05— : : : :
o ooaf ¢ . v/ m? at fixed z = 0, for
S o3 | the vector coupling.
S oozl B/m = 0.1 (thin lines)
N,;Iff— 0.01 and 1.0 (thick lines).
E ;
=4 0.011\\\ Q — (y/m?) 1.
“E ool s 1 = = (y/m?) n.
< 003 TSl o . — o 1 (y/m?) .

0oy gy Y3 =0forz=0

y/m2

Power one is expected for the pion valence amplitude from the dimensional
arguments by X. Ji et al, PRL 90 (2003) 241601 (cf also Brodsky & Farrar
for the counting rules of exclusive amplitudes)

For scalars ¢(v,z) ~ 1/[y]?> (FSV PRD 89 (2014) 016010)
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Conclusions & Perspectives

@ A systematization of the technique for solving the fermionic BSE has
been given, as well as a general rule for the expected singularities,
that do not depend upon the complexity of the kernel.

@ The LF framework has well-known advantages in performing
analytical integrations, and in the investigated fermionic case its
effectiveness has been shown in its full glory.

@ Our numerical investigations, performed in ladder approximation at
the present stage, confirm both the robustness of the Nakanishi
Integral Representation for the BS amplitude, valid for any analytical
BS kernel, and encourage to extended the technique to other
interesting cases: boson-fermion system, three-fermions, two
interacting vectors, inclusion of dressed propagators... applications in
QCD and Nuclear Physics...

o Calculations are in progress for the LF momentum distributions of the
two-fermion system in the valence component, elucidating some
formal subtleties.
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THANK YOU!
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