IMP, Huizhou,

September 2024

Few-body relativistic Light-Front wave functions: deuteron, He-3, nucleon, He-4

V.A. Karmanov

Lebedev Physical Institute, Moscow, Russia

• Light-front dynamics (LFD)

Dirac (1949)

State vector (wave function) is defined on the light-front plane

$$t + z = 0$$

• Explicitly covariant LFD

V.A. Karmanov, JETP, 44 (1976) 201. J. Carbonell, B. Desplanques, V.A. Karmanov, J.-F. Mathiot, Phys. Reports, 300 (1998) 215

State vector is defined on the light-front plane of general orientation:

$$\omega \cdot x = \omega_0 t - \vec{\omega} \cdot \vec{x}, \quad \omega = (\omega_0, \vec{\omega}), \quad \omega^2 = 0.$$

Particular case: $\omega = (1, 0, 0, -1)$ corresponds to the standard approach.

J. Carbonell, V.A. Karmanov,

Relativistic deuteron wave function in the light-front dynamics, Nucl. Phys. **A 581** (1995) 625.

Six spin components, each depends on two scalar variables:

 $\psi = \psi(\vec{k}_{\perp}, x)$

Next step: three-fermion system.

V.A. Karmanov,

The nucleon wave function in light-front dynamics,

Nucl. Phys. **A 644** (1998) 165.

Sixteen spin components, each depends on five scalar variables:

 $\psi = \psi(\vec{k}_{1\perp}, \vec{k}_{2\perp}, \vec{k}_{3\perp}; x_1, x_2, x_3), \ \vec{k}_{1\perp} + \vec{k}_{2\perp} + \vec{k}_{3\perp} = 0, \ x_1 + x_2 + x_3 = 1$

 $\psi = \psi(k_{1\perp}, k_{2\perp}, \vec{k}_{1\perp} \cdot \vec{k}_{2\perp}; x_1, x_2) \leftarrow \text{five scalar variables}$

This was too complicated for us!

Prof. Xingbo Zhao:

Don't worry about the computer power. We have computer facilities allowing to solve practically any interesting problem!

Another problem: labor force.

I hope to solve these very interesting and important problems together with you. And then go ahead.

Two-body wave function

 $\psi = \psi(k_1, k_2, p, \omega\tau), \quad k_1 + k_2 = p + \omega\tau$

 $k_1^2 = k_2^2 = m^2, \ p^2 = M^2, \ (\omega \tau)^2 = 0.$ On mass shell, but off-energy-shell! If $\omega = (1, 0, 0, -1), \ \vec{\omega}_{\perp} = 0, \omega_{+} = \omega_0 + \omega_z = 0, \omega_{-} = 2,$ we restore the ordinary version of LFD:

 $\vec{k}_{1\perp} + \vec{k}_{2\perp} = \vec{p}_{\perp}, \ k_{1+} + k_{2+} = p_+,$ but $k_{1-} + k_{2-} - p_- = 2\tau \neq 0.$

C.m. variables: $\vec{k}_1 + \vec{k}_2 = \vec{p} + \vec{\omega}\tau = 0$ $\rightarrow \vec{k} = \vec{k}_1 = -\vec{k}_2, \ \vec{n} = \vec{\omega}/|\vec{\omega}|, \quad \psi = \psi(\vec{k}, \vec{n}) \equiv \psi(k_\perp, x)$ since $\vec{k} = (\vec{x} \cdot \vec{k}) \vec{x} = \vec{k}_2 = \vec{k}_2 = (\vec{x} \cdot \vec{k})^2 = x = \frac{1}{2} \int_{-\infty}^{\infty} (\vec{x} \cdot \vec{k}) \vec{x} = \frac{1}{2} \int_{-\infty}^{\infty} (\vec{x} \cdot \vec{k}) \vec{x} = x$

 $\vec{k}_{\perp} = \vec{k} - (\vec{n}\vec{k})\vec{n}, \quad \vec{k}_{\perp}^2 = \vec{k}^2 - (\vec{n}\vec{k})^2, \quad x = \frac{1}{2}\left(1 - \frac{\vec{n}\vec{k}}{\sqrt{\vec{k}^2 + m^2}}\right)$

• Spinless equation

$$\begin{pmatrix} \frac{\vec{k}_{\perp}^2 + m^2}{x(1-x)} - M^2 \end{pmatrix} \psi(\vec{k}_{\perp}, x)$$

$$= -\frac{m^2}{2\pi^3} \int \psi(\vec{k}'_{\perp}, x') V(\vec{k}'_{\perp}, x'; \vec{k}_{\perp}, x, M^2) \frac{d^3k'_{\perp} dx'}{2x'(1-x')}$$

Kernel (one-boson exchange):

 $V(\vec{k}_{\perp}', x'; \vec{k}_{\perp}, x, M^2) =$

$$g^{2} \left[\mu^{2} + \frac{x'}{x} \left(1 - \frac{x}{x'} \right)^{2} m^{2} + \frac{x'}{x} \left(\vec{k}_{\perp} - \frac{x}{x'} \vec{k}_{\perp}' \right)^{2} + (x' - x) \left(\frac{m^{2} + \vec{k}_{\perp}^{2}}{x(1 - x)} - M^{2} \right) + \mu^{2} \right]^{-1}, \quad x' > x$$

Non-relativistic deuteron WF

Bound np system, $J^{\pi} = 1^+$.

$$\psi_{NR}^{M}(\vec{k}) = w_{\sigma_{1}}^{\dagger} \left[\frac{1}{\sqrt{4\pi}} u_{S}(k) C_{\frac{1}{2}\sigma_{1}\frac{1}{2}\sigma_{2}}^{1M} + u_{D}(k) C_{\frac{1}{2}\sigma_{1}\frac{1}{2}\sigma_{2}}^{1\sigma} C_{1\sigma_{2}m}^{1M} Y_{2m} \left(\frac{\vec{k}}{k} \right) \right] w_{\sigma_{2}}^{\dagger}$$

Two scalar functions (spin components): $u_S(k)$, S-wave (L = 0): $J = (\frac{1}{2} + \frac{1}{2} = 1) + 0 \Rightarrow 1$ $u_D(k)$, D-wave (L = 2): $J = (\frac{1}{2} + \frac{1}{2} = 1) + 2 \Rightarrow 1$

Or, the same via Pauli matrices: $\vec{\psi}_{NR}(\vec{k}\,) = w_{\sigma_1}^{\dagger} \left[u_S(k) \frac{1}{\sqrt{2}} \vec{\sigma} - u_D(k) \frac{1}{2} \left(\frac{3\vec{k}(\vec{k}\cdot\vec{\sigma})}{\vec{k}\,^2} - \vec{\sigma} \right) \right] w_{\sigma_2}^{\dagger} .$

Relativistic deuteron LFWF

We have extra vector parameter \vec{n} .

$$\vec{\psi}(\vec{k},\vec{n}) = w_{\sigma_1}^{\dagger} \left[f_1 \frac{1}{\sqrt{2}} \vec{\sigma} + f_2 \frac{1}{2} \left(\frac{3\vec{k}(\vec{k}\cdot\vec{\sigma})}{\vec{k}^2} - \vec{\sigma} \right) + f_3 \frac{1}{2} \left(3\vec{n}(\vec{n}\cdot\vec{\sigma}) - \vec{\sigma} \right) \right]$$

$$+ f_4 \frac{1}{2k} (3\vec{k}(\vec{n}\cdot\vec{\sigma}) + 3\vec{n}(\vec{k}\cdot\vec{\sigma}) - 2(\vec{k}\cdot\vec{n})\vec{\sigma}) + f_5 \sqrt{\frac{3}{2}} \frac{i}{k} [\vec{k}\times\vec{n}]$$

+
$$f_6 \frac{\sqrt{3}}{2k} [[\vec{k} \times \vec{n}] \times \vec{\sigma}] \sigma_y w^{\dagger}_{\sigma_2}$$

Six spin components $f_1 - f_6$ instead of two!

• Another (4D) representation

$$\begin{split} \Phi^{\lambda}_{\sigma_{2}\sigma_{1}}(k_{1},k_{2},p,\omega\tau) &= \sqrt{m} \ e_{\mu}(p,\lambda) \ \bar{u}^{\sigma_{2}}(k_{2}) \\ \times \quad \left[\varphi_{1} \frac{(k_{1}-k_{2})^{\mu}}{2m^{2}} + \varphi_{2} \frac{1}{m} \gamma^{\mu} + \varphi_{3} \frac{\omega^{\mu}}{\omega \cdot p} + \varphi_{4} \frac{(k_{1}-k_{2})^{\mu} \hat{\omega}}{2m \omega \cdot p} \right. \\ \left. - \quad \varphi_{5} \frac{i}{m^{2} \omega \cdot p} \gamma_{5} \epsilon^{\mu \nu \rho \gamma} k_{1\nu} k_{2\rho} \omega_{\gamma} + \varphi_{6} \frac{m \omega^{\mu} \hat{\omega}}{(\omega \cdot p)^{2}} \right] \ U_{c} \bar{u}^{\sigma_{1}}(k_{1}) \ , \end{split}$$

where $e_{\mu}(p,\lambda)$ is the deuteron polarization vector.

At $\vec{k}_1 + \vec{k}_2 = 0$ this wave function turns into $\vec{\psi}(\vec{k}, \vec{n})$.

One can use both representations, depending on convenience.

• Why six components?

$$\Phi_{\sigma_2\sigma_1}^{\lambda}$$

$$\sigma_1 = \pm \frac{1}{2}, \ \sigma_2 = \pm \frac{1}{2}, \ \lambda = -1, 0, 1$$

$$\Rightarrow 2 \times 2 \times 3 = 12$$

parity conservation $\Rightarrow 12/2 = 6$

Important:

Parity conservation does not reduce the number of components for the non-relativistic 4-body WF and for 3-body LFWF! (to be explained later)

• Equation for two-body LFWF

• Kernel (OBE)

= sum over seven meson exchanges

• The meson's parameters

Table 1: Parameters of the exchanged mesons (Bonn potential)										
		J^{π}	T	μ (MeV)	$g^2/(4\pi) \; [f/g]$	Λ (GeV)	n			
	π	0^{-}	1	138.03	14.6	1.3	1			
	η	0^{-}	0	548.8	5.0	1.5	1			
	δ	0^+	1	983	1.1075	2	1			
	σ_0	0^+		720	16.9822	2	1			
	σ_1	0^+		550	8.2797	2	1			
	ω	1-	0	782.6	20.0 [0.0]	1.5	1			
	ho	1-	1	769	0.81 [6.1]	2	2			

• Numerical results for f_1, f_2

(b)

(a)

Dashed – non-relativistic Solid line – relativistic (LFD)

• Numerical results for all f_{1-6}

(J. Carbonell & V.A. Karmanov)

• E.M. form factors

• Deuteron electromagnetic form factors

$$\begin{aligned} \langle \lambda' | J_{\rho} | \lambda \rangle &= e_{\mu}^{*\lambda'}(p') \left\{ P_{\rho} \left[\mathcal{F}_{1}(q^{2}) g^{\mu\nu} + \mathcal{F}_{2}(q^{2}) \frac{q^{\mu}q^{\nu}}{2M^{2}} \right] \\ &+ \mathcal{G}_{1}(q^{2}) (g_{\rho}^{\mu}q^{\nu} - g_{\rho}^{\nu}q^{\mu}) \right\} e_{\nu}^{\lambda}(p) \end{aligned}$$

Charge, magnetic and quadrupole form factors

$$F_C = -\mathcal{F}_1 - \frac{2\eta}{3} [\mathcal{F}_1 + \mathcal{G}_1 - \mathcal{F}_2(1+\eta)],$$

$$F_M = \mathcal{G}_1,$$

$$F_Q = -\mathcal{F}_1 - \mathcal{G}_1 + \mathcal{F}_2(1+\eta), \text{ where } \eta = Q^2/4M^2.$$

• *ed* cross section

ed scattering amplitude:

$$\frac{d\sigma}{d\Omega} = \frac{\alpha^2 \cos^2(\theta/2)}{4E^2 \sin^4(\theta/2)} \left(A(q^2) + \tan^2 \frac{1}{2}\theta \ B(q^2) \right)$$

$$\begin{aligned} A(q^2) &= F_C^2(q^2) + \frac{8}{9}\eta^2 F_Q^2(q^2) + \frac{2}{3}\eta F_M^2(q^2) ,\\ B(q^2) &= \frac{4}{3}\eta(1+\eta)F_M^2(q^2) . \end{aligned}$$

• Polarization observable t_{20}

$$t_{20} = \frac{\left[\left(\frac{d\sigma}{d\Omega} \right)_{+} - 2 \left(\frac{d\sigma}{d\Omega} \right)_{0} + \left(\frac{d\sigma}{d\Omega} \right)_{-} \right]}{\left[\left(\frac{d\sigma}{d\Omega} \right)_{+} + \left(\frac{d\sigma}{d\Omega} \right)_{0} + \left(\frac{d\sigma}{d\Omega} \right)_{-} \right]}$$

$$t_{20} \left(A(q^2) + \tan^2 \frac{1}{2} \theta \ B(q^2) \right) = -\frac{1}{\sqrt{2}} \left[\frac{8}{3} \eta F_C F_Q + \frac{8}{9} \eta^2 F_Q^2 + \frac{1}{3} \eta \left(1 + 2(1+\eta) \tan^2 \frac{1}{2} \theta \right) F_M^2 \right].$$

• t_{20} prediction

Comparison with experiment

End of lecture 1

• Lecture 2.

Reminder of the lecture 1. Deuteron LF wave function. Wave function $\Phi_{\sigma_2\sigma_1}^{\lambda}$ of a system with total momentum J = 1, its projections λ , made of two fermions (spins 1/2, projections $\sigma_{1,2} = \pm \frac{1}{2}$), is a matrix containing $2 \times 2 \times 3 = 12$ elements. Due to parity conservation, only half of them is independent: $\Rightarrow 12/2=6$.

In principle, to find $\Phi_{\sigma_2\sigma_1}^{\lambda}$, we have to find (from equation) all these six independent matrix elements (as functions of the particle momenta).

Our strategy: we represent $\Phi_{\sigma_2\sigma_1}^{\lambda}$ as a sum of six known matrices with unknown scalar coefficients φ_{1-6} (called spin components)

$$\begin{split} \Phi^{\lambda}_{\sigma_{2}\sigma_{1}}(k_{1},k_{2},p,\omega\tau) &= \mathcal{O}^{\lambda}_{1\sigma_{2}\sigma_{1}}\varphi_{1} + \mathcal{O}^{\lambda}_{2\sigma_{2}\sigma_{1}}\varphi_{2} + \mathcal{O}^{\lambda}_{3\sigma_{2}\sigma_{1}}\varphi_{3} \\ &+ \mathcal{O}^{\lambda}_{4\sigma_{2}\sigma_{1}}\varphi_{4} + \mathcal{O}^{\lambda}_{5\sigma_{2}\sigma_{1}}\varphi_{5} + \mathcal{O}^{\lambda}_{6\sigma_{2}\sigma_{1}}\varphi_{6} \end{split}$$

$$\begin{split} \Phi^{\lambda}_{\sigma_{2}\sigma_{1}}(k_{1},k_{2},p,\omega\tau) &= \sqrt{m} \ e_{\mu}(p,\lambda) \ \bar{u}^{\sigma_{2}}(k_{2}) \\ \times & \left[\varphi_{1} \frac{(k_{1}-k_{2})^{\mu}}{2m^{2}} + \varphi_{2} \frac{1}{m} \gamma^{\mu} + \varphi_{3} \frac{\omega^{\mu}}{\omega \cdot p} + \varphi_{4} \frac{(k_{1}-k_{2})^{\mu} \hat{\omega}}{2m \omega \cdot p} \right. \\ & - & \left. \varphi_{5} \frac{i}{m^{2} \omega \cdot p} \gamma_{5} \epsilon^{\mu \nu \rho \gamma} k_{1\nu} k_{2\rho} \omega_{\gamma} + \varphi_{6} \frac{m \omega^{\mu} \hat{\omega}}{(\omega \cdot p)^{2}} \right] \ U_{c} \bar{u}^{\sigma_{1}}(k_{1}) \ , \end{split}$$

 $e_{\mu}(p,\lambda) \ \bar{u}^{\sigma_2}(k_2) \mathcal{M}_1^{\mu} U_c \bar{u}^{\sigma_1}(k_1) \varphi_1 +$ That is:

$$\mathcal{O}_{1\sigma_{2}\sigma_{1}}^{\lambda} = \sqrt{m} e_{\mu}(p,\lambda) \ \bar{u}^{\sigma_{2}}(k_{2}) \frac{(k_{1}-k_{2})^{\mu}}{2m^{2}} U_{c}\bar{u}^{\sigma_{1}}(k_{1})$$

$$\mathcal{O}_{2\sigma_{2}\sigma_{1}}^{\lambda} = \dots$$

$$\mathcal{O}_{6\sigma_{2}\sigma_{1}}^{\lambda} = \sqrt{m} e_{\mu}(p,\lambda) \ \bar{u}^{\sigma_{2}}(k_{2}) \frac{m\omega^{\mu}\hat{\omega}}{(\omega \cdot p)^{2}} U_{c}\bar{u}^{\sigma_{1}}(k_{1})$$
For Body relations

Few-Body relativistic LFWF's - p. 22/49

• C.m. frame

$$\begin{split} \vec{\psi}(\vec{k},\vec{n}) &= w_{\sigma_2}^{\dagger} \left[f_1 \frac{1}{\sqrt{2}} \vec{\sigma} + f_2 \frac{1}{2} \left(\frac{3\vec{k}(\vec{k}\cdot\vec{\sigma})}{\vec{k}^2} - \vec{\sigma} \right) \right. \\ &+ f_3 \frac{1}{2} \left(3\vec{n}(\vec{n}\cdot\vec{\sigma}) - \vec{\sigma} \right) \end{split}$$

$$+ f_4 \frac{1}{2k} (3\vec{k}(\vec{n}\cdot\vec{\sigma}) + 3\vec{n}(\vec{k}\cdot\vec{\sigma}) - 2(\vec{k}\cdot\vec{n})\vec{\sigma}) + f_5 \sqrt{\frac{3}{2}} \frac{i}{k} [\vec{k}\times\vec{n}]$$

+
$$f_6 \frac{\sqrt{3}}{2k} [[\vec{k} \times \vec{n}] \times \vec{\sigma}] \sigma_y w^{\dagger}_{\sigma_1}$$

$$\vec{\mathcal{O}}_{1\sigma_2\sigma_1} = w_{\sigma_2}^{\dagger} \frac{1}{\sqrt{2}} \vec{\sigma} \sigma_y w_{\sigma_1}^{\dagger}, \ \vec{\mathcal{O}}_{2\sigma_2\sigma_1} = \dots, \ \vec{\mathcal{O}}_{6\sigma_2\sigma_1} = w_{\sigma_2}^{\dagger} \frac{\sqrt{3}}{2k} [[\vec{k} \times \vec{n}] \times \vec{\sigma}] \sigma_y w_{\sigma_1}^{\dagger}$$

• Trivial example

Take matrix

$$M = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right)$$

Decompose it as

$$M = a \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + b \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + c \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} + d \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$
$$\mathcal{O}_1 \qquad \mathcal{O}_2 \qquad \mathcal{O}_3 \qquad \mathcal{O}_4$$

The basis matrices \mathcal{O}_{1-4} are known. The matrix M is determined by the coefficients a, b, c, d, similarly to the deuteron wave function.

• Numerical results for all f_{1-6}

(J. Carbonell & V.A. Karmanov)

• t_{20} prediction

Comparison with experiment

End of reminder of lecture 1

• Three-body system

Faddeev components Three-body Schrödinger equation

$$\left[-\frac{1}{2m}\Delta + V_1 + V_2 + V_3\right]\Psi(\vec{r_1}, \vec{r_2}, \vec{r_3}) = E\Psi(\vec{r_1}, \vec{r_2}, \vec{r_3})$$

Represent $\Psi(\vec{r_1}, \vec{r_2}, \vec{r_3})$ as:

$$\Psi = \Psi_1(\vec{x}_1, \vec{y}_1) + \Psi_2(\vec{x}_2, \vec{y}_2) + \Psi_3(\vec{x}_3, \vec{y}_3).$$

where \vec{x}_i, \vec{y}_i (i=1,2,3) are three sets of Jacobi coordinates

$$\vec{x}_1 = \vec{r}_2 - \vec{r}_3, \quad \vec{y}_1 = \frac{2}{\sqrt{3}} \left(\frac{\vec{r}_2 + \vec{r}_3}{2} - \vec{r}_1 \right),$$

and other pairs of coordinates are obtained by the cyclic permutation. Then the three-body Schrödinger equation is rewritten as the system of equations for the Faddeev components:

$$\begin{bmatrix} k^{2} + \Delta_{\vec{x}_{1}} + \Delta_{\vec{y}_{1}} - \frac{m}{\hbar^{2}} V_{1}(\vec{x}_{1}) \end{bmatrix} \Psi_{1}(\vec{x}_{1}, \vec{y}_{1}) = \\ \frac{m}{\hbar^{2}} V_{1}(\vec{x}_{1}) [\Psi_{2}(\vec{x}_{2}, \vec{y}_{2}) + \Psi_{3}(\vec{x}_{3}, \vec{y}_{3})], \\ \begin{bmatrix} k^{2} + \Delta_{\vec{x}_{2}} + \Delta_{\vec{y}_{2}} - \frac{m}{\hbar^{2}} V_{2}(\vec{x}_{2}) \end{bmatrix} \Psi_{2}(\vec{x}_{2}, \vec{y}_{2}) = \\ \frac{m}{\hbar^{2}} V_{2}(\vec{x}_{2}) [\Psi_{3}(\vec{x}_{3}, \vec{y}_{3}) + \Psi_{1}(\vec{x}_{1}, \vec{y}_{1})], \\ \begin{bmatrix} k^{2} + \Delta_{\vec{x}_{3}} + \Delta_{\vec{y}_{3}} - \frac{m}{\hbar^{2}} V_{3}(\vec{x}_{3}) \end{bmatrix} \Psi_{3}(\vec{x}_{3}, \vec{y}_{3}) = \\ \frac{m}{\hbar^{2}} V_{3}(\vec{x}_{3}) [\Psi_{1}(\vec{x}_{1}, \vec{y}_{1}) + \Psi_{2}(\vec{x}_{2}, \vec{y}_{2})]. \tag{1}$$

where $k^2 = mE/\hbar^2$. Sum of these equations gives initial three-body Schrödinger equation for Ψ .

• ³He WF (ppn)

Permutations

 $\Psi(1,2,3) = \Phi_{12}(1,2,3) + \Phi_{12}(2,3,1) + \Phi_{12}(3,1,2),$

 $\Phi(1,2,3) = -\Phi_{12}(2,1,3)$ is Faddeev components. It is antisymmetric relative to permutation of the first pair 12 only. Then $\Psi(1,2,3)$ is antisymmetric relative to permutation of

the any pair. For example:

 $\Psi(1,2,3) = \Phi_{12}(1,2,3) + \Phi_{12}(2,3,1) + \Phi_{12}(3,1,2)$ $\Psi(1,3,2) = \Phi_{12}(1,3,2) + \Phi_{12}(3,2,1) + \Phi_{12}(2,1,3)$ $= -\Phi_{12}(3,1,2) - \Phi_{12}(2,3,1) - \Phi_{12}(1,2,3)$ $= -\Psi(1,2,3)$

• Non-relativistic ³He WF

$$J^{\pi} = \frac{1}{2}^+$$

Table 2: Spins, angular momenta and isospins formingthe non-relativistic ³He wave function.

	spin	s-angı	ular mo	is	isospins					
n	S_{12}	L_{12}	J_{12}	s_3	l_3	j_3	J	T_{12}	t_3	T
1	0	0	0	1/2	0	1/2	1/2	1	1/2	1/2
2	1	0	1	1/2	0	1/2	1/2	0	1/2	1/2
3	1	2	1	1/2	0	1/2	1/2	0	1/2	1/2
4	1	0	1	1/2	2	3/2	1/2	0	1/2	1/2
5	1	2	1	1/2	2	3/2	1/2	0	1/2	1/2

• Non-relativistic ³He WF

Spin basis

$$\begin{split} \chi_{1} &= C_{\frac{1}{2}\sigma_{1}\frac{1}{2}\sigma_{2}}^{00}C_{00\frac{1}{2}\sigma_{3}}^{\frac{1}{2}\sigma}Y_{00}Y_{00} \\ \chi_{2} &= \sum C_{\frac{1}{2}\sigma_{1}\frac{1}{2}\sigma_{2}}^{1\sigma_{12}}C_{1\sigma_{12}\frac{1}{2}\sigma_{3}}^{\frac{1}{2}\sigma}Y_{00}Y_{00} \\ \chi_{3} &= \sum C_{\frac{1}{2}\sigma_{1}\frac{1}{2}\sigma_{2}}^{1\sigma_{12}}C_{2m\,1\sigma_{12}}^{1\sigma'}Y_{2m}\left(\frac{\vec{p}}{|\vec{p}|}\right)C_{1\sigma'\frac{1}{2}\sigma_{3}}^{\frac{1}{2}\sigma}Y_{00} \\ \chi_{4} &= \sum C_{\frac{1}{2}\sigma_{1}\frac{1}{2}\sigma_{2}}^{1\sigma_{12}}C_{2m\,\frac{1}{2}\sigma_{3}}^{\frac{3}{2}\sigma'}Y_{2m}\left(\frac{\vec{q}}{|\vec{q}|}\right)C_{1\sigma_{12}\frac{3}{2}\sigma'}^{\frac{1}{2}\sigma}Y_{00} \\ \chi_{5} &= \sum C_{\frac{1}{2}\sigma_{1}\frac{1}{2}\sigma_{2}}^{1\sigma'_{12}}C_{2m\,1\sigma_{12}}^{1\sigma'_{12}}Y_{2m}\left(\frac{\vec{p}}{|\vec{p}|}\right) \\ &\times C_{\frac{3}{2}\sigma''}^{\frac{3}{2}\sigma''}Y_{2m'}\left(\frac{\vec{q}}{|\vec{q}|}\right)C_{1\sigma'\frac{3}{2}\sigma''}^{\frac{1}{2}\sigma}, \end{split}$$

$$\vec{p} = \frac{1}{2}(\vec{k}_1 - \vec{k}_2), \quad \vec{q} = \frac{1}{3}\left(\frac{\vec{k}_1 + \vec{k}_2}{2} - \vec{k}_3\right).$$

Few-Body relativistic LFWF's - p. 31/49

Isospin basis

$$\begin{aligned} \xi_{\tau_1 \tau_2 \tau_3}^{(0)} &= C_{\frac{1}{2}\tau_1 \frac{1}{2}\tau_2}^{00} C_{00\frac{1}{2}\tau_3}^{\frac{1}{2}\tau} \\ \xi_{\tau_1 \tau_2 \tau_3}^{(1)} &= C_{\frac{1}{2}\tau_1 \frac{1}{2}\tau_2}^{1\tau_{12}} C_{1\tau_{12}\frac{1}{2}\tau_3}^{\frac{1}{2}\tau} \end{aligned}$$

Non-relativistic WF:

 $\Phi_{12} = \psi_1(p,q)\chi_1\xi_{\tau_1\tau_2\tau_3}^{(1)}$

+ $[\psi_2(p,q)\chi_2 + \psi_3(p,q)\chi_3 + \psi_4(p,q)\chi_4 + \psi_5(p,q)\chi_5]\xi^{(0)}_{\tau_1\tau_2\tau_3}$

• How many components?

 $\Phi_{12}(1,2,3) = \Phi_{12,\sigma}^{\sigma_1 \sigma_2 \sigma_3}(1,2,3)$

$$\sigma_1, \sigma_2, \sigma_3, \sigma = \pm \frac{1}{2} \quad \rightarrow \quad 2 \times 2 \times 2 \times 2 = 16.$$

Parity conservation **does not** reduce the number of components for the non-relativistic 4-body WF and for 3-body LFWF! We can construct the pseudoscalar

$$C_{ps} = \frac{e^{\mu\nu\rho\gamma}k_{1\mu}k_{2\nu}p_{\rho}\omega_{\gamma}}{|e^{\mu\nu\rho\gamma}k_{1\mu}k_{2\nu}p_{\rho}\omega_{\gamma}|}$$

Parity conservation splits, as usual, 16 basis wave function in two groups: with positive and negative parity.
However, multiplying, say, the functions with negative parities by C_{ps}, we restore the positive parity.
We get the total number: 16

This happens in the 3-body relativistic case, when the wave function depends on the orientation of the LF plane. In two-body relativistic (and non-relativistic case) it is impossible ($C_{ps} = 0$) In three-body non-relativistic case it is also impossible: $C_{ps} = e^{\mu\nu\rho\gamma}k_{1\mu}k_{2\nu}k_{3\rho}p_{\gamma} = 0$ (since $p = k_1 + k_2 + k_3$). In 4-body non-relativistic case it is possible (known long ago).

The problems to be solved:

- 1. To construct 16 basis functions and to decompose in this basis the LFWF $\Phi_{12}(1, 2, 3)$ (Faddeev component).
- 2. To derive the system of equations for the coefficients these decomposition.
- 3. To solve this system and find in this way the 3 He LFWF.
- 4. (Next step) Using this solution, to calculate the 3 He em FF's.

• Orthogonal spin basis

$$s_{1} = \left(2x_{3} - (m + x_{3}M)\frac{\hat{\omega}}{\omega \cdot p}\right),$$

$$s_{2} = \frac{m}{\omega \cdot p}\hat{\omega},$$

$$s_{3} = i\left(2x_{3} - (m - x_{3}M)\frac{\hat{\omega}}{\omega \cdot p}\right)\gamma_{5},$$

$$s_{4} = \frac{im}{\omega \cdot p}\hat{\omega}\gamma_{5}.$$

$$\hat{\omega} = \omega_{\mu} \gamma^{\mu}, \ x_3 = \frac{\omega \cdot k_3}{\omega \cdot p}.$$

Define (nucleon No. 3 and 3 He):

$$S_{\sigma\sigma_3}^j = N_j^S \bar{u}_{\sigma}(k_3) s_j u_{\sigma_3}(p),$$

$$\bar{S}_{\sigma\sigma_3}^j = N_j^S \bar{u}_{\sigma}(p) \bar{s}_j u_{\sigma_3}(k_3), \quad \bar{s}_j = \gamma_0 s_j^{\dagger} \gamma_0.$$

Orthogonality: $\frac{1}{2} \sum_{\sigma_3 \sigma} \bar{S}^j_{\sigma \sigma_3} S^j_{\sigma \sigma_3} = \delta_{jj'}$.

Few-Body relativistic LFWF's - p. 35/49

• Another set

$$t_{1} = i \left(2 \frac{x_{1} x_{2}}{x_{1} + x_{2}} - \frac{m \hat{\omega}}{\omega \cdot p} \right) \gamma_{5},$$

$$t_{2} = i \frac{m \hat{\omega}}{\omega \cdot p} \gamma_{5},$$

$$t_{3} = \left(2 \frac{x_{1} x_{2}}{(x_{1} + x_{2})} + \frac{(x_{1} - x_{2})}{(x_{1} + x_{2})} \frac{m \hat{\omega}}{\omega \cdot p} \right)$$

$$t_{4} = \frac{m \hat{\omega}}{\omega \cdot p}, \quad x_{1,2} = \frac{\omega \cdot k_{1,2}}{\omega \cdot p}.$$

Define (nucleons No. 1 and 2):

 $T_{\sigma_{1}\sigma_{2}}^{i} = N_{i}^{T}\bar{u}_{\sigma_{1}}(k_{1})t_{i}U_{c}\bar{u}_{\sigma_{2}}(k_{2}), \quad U_{c} = \gamma_{2}\gamma_{0},$ $\bar{T}_{\sigma_{2}\sigma_{1}}^{i} = N_{i}^{T}\bar{u}_{\sigma_{2}}(k_{2})t_{i}^{\dagger}U_{c}\bar{u}_{\sigma_{1}}(k_{1}).$

Orthogonality: $\sum_{\sigma_1 \sigma_2} \bar{T}^i_{\sigma_2 \sigma_1} T^{i'}_{\sigma_1 \sigma_2} = \delta_{ii'}$.

• 16 terms basis V_{ij}

 $\begin{array}{rcl} V_{11} &=& T_1 \otimes S_1, & V_{12} = T_1 \otimes S_2, \\ V_{21} &=& T_2 \otimes S_1, & V_{22} = T_2 \otimes S_2, \\ V_{33} &=& T_3 \otimes S_3, & V_{34} = T_3 \otimes S_4, \\ V_{43} &=& T_4 \otimes S_3, & V_{44} = T_4 \otimes S_4, \\ V_{13} &=& T_1 \otimes S_3 C_{ps}, & V_{14} = T_1 \otimes S_4 C_{ps}, \\ V_{23} &=& T_2 \otimes S_3 C_{ps}, & V_{24} = T_2 \otimes S_4 C_{ps}, \\ V_{31} &=& T_3 \otimes S_1 C_{ps}, & V_{32} = T_3 \otimes S_2 C_{ps}, \\ V_{41} &=& T_4 \otimes S_1 C_{ps}, & V_{42} = T_4 \otimes S_2 C_{ps}. \end{array}$

 $4 \times 4 = 16 = 2 \times 2 \times 2 \times 2$ Direct products:

 $V_{12} = T_1 \otimes S_2 = [N_1^T \bar{u}_{\sigma_1}(k_1) t_1 U_c \bar{u}_{\sigma_2}(k_2)] [N_2^S \bar{u}_{\sigma}(k_3) s_2 u_{\sigma_3}(p)]$

Decomposition of the wave function

$$\Phi_{12\sigma_{1}\sigma_{2}\sigma_{3}}^{\sigma}(1,2,3) = \Phi_{12\sigma_{1}\sigma_{2}\sigma_{3}}^{(0)\sigma}(1,2,3)\xi_{\tau_{1}\tau_{2}\tau_{3}}^{(0)\tau} + \Phi_{12\sigma_{1}\sigma_{2}\sigma_{3}}^{(1)\sigma}(1,2,3)\xi_{\tau_{1}\tau_{2}\tau_{3}}^{(1)\tau}$$

$$\Phi_{12\sigma_1\sigma_2\sigma_3}^{(0,1)\sigma}(1,2,3) = \sum_{ij} g_{ij}^{(0,1)} V_{ij}$$

$$g_{ij}^{(0,1)} = g_{ij}^{(0,1)}(\vec{k}_{1\perp}, \vec{k}_{2\perp}, \vec{k}_{3\perp}; x_1, x_2, x_3),$$

$$\vec{k}_{1\perp} + \vec{k}_{2\perp} + \vec{k}_{3\perp} = 0; \ x_1 + x_2 + x_3 = 1.$$

16 scalar functions $g_{ij}^{(0,1)}$ depend on five scalar variables: $g_{ij}^{(0,1)} = g_{ij}^{(0,1)}(\vec{k}_{1\perp}^2, \vec{k}_{2\perp}^2, \vec{k}_{1\perp} \cdot \vec{k}_{2\perp}; x_1, x_2)$ The problem is reduced to finding them.

• System of equations

$$\begin{split} (\mathcal{M}^2 - M^2) g_{12;ij}^{(n)}(1,2,3) & \leftarrow n = 0,1 \text{ (pair isospins)} \\ = & \sum_{i'j',n'=0,1} \int g_{12;i'j'}^{(n')}(1',2',3) W_{ij}^{i'j'}(12)(1',1;2',2;3) \frac{1}{(2\pi)^3} \frac{d^2k'_{2\perp}dx'_2}{2x'_1x'_2} \\ + & \sum_{i'j',n'=0,1} \int g_{12;i'j'}^{(n')}(3,1',2') W_{ij}^{i'j'}(31)(1',1;2',2;3) \frac{1}{(2\pi)^3} \frac{d^2k'_{2\perp}dx'_2}{2x'_1x'_2} \\ + & \sum_{i'j',n'=0,1} \int g_{12;i'j'}^{(n')}(2',3,1') W_{ij}^{i'j'}(23)(1',1;2',2;3) \frac{1}{(2\pi)^3} \frac{d^2k'_{2\perp}dx'_2}{2x'_1x'_2} \end{split}$$

There is only 3D integration here: $d^2k'_{2\perp}dx'_2!$

Interaction

The same as in the two-body system (OBE or OGE)

 $\mathcal{K} = \Pi_{12} O_1 O_2$

$$W_{ij}^{i'j'}(\mathbf{31}) = \Pi_{12}Tr\Big[(\hat{k}_2 + m)O_2(\hat{k'}_2 + m)S_{j'}(2')(\hat{p} + M)\bar{S}_j(3)(\hat{k}_3 + m) \\ \times T_{i'}(3, 1', 2')(-\hat{k'}_1 + m)O_1(-\hat{k}_1 + m)\bar{T}_i(1, 2, 3)\Big]$$

Solving system of equations

$$\begin{split} &(\mathcal{M}^2 - M^2) g_{12;ij}^{(n)}(1,2,3) &\leftarrow n = 0,1 \text{ (pair isospins)} \\ &= \sum_{i'j',n'=0,1} \int g_{12;i'j'}^{(n')}(1',2',3) W_{ij}^{i'j'}(12)(1',1;2',2;3) \frac{1}{(2\pi)^3} \frac{d^2 k'_{2\perp} dx'_2}{2x'_1 x'_2} \\ &+ \sum_{i'j',n'=0,1} \int g_{12;i'j'}^{(n')}(3,1',2') W_{ij}^{i'j'}(31)(1',1;2',2;3) \frac{1}{(2\pi)^3} \frac{d^2 k'_{2\perp} dx'_2}{2x'_1 x'_2} \\ &+ \sum_{i'j',n'=0,1} \int g_{12;i'j'}^{(n')}(2',3,1') W_{ij}^{i'j'}(23)(1',1;2',2;3) \frac{1}{(2\pi)^3} \frac{d^2 k'_{2\perp} dx'_2}{2x'_1 x'_2} \end{split}$$

1. Substitute as $g_{12;ij}^{(n)}(1,2,3)$ in r.h.-side of this equation well known non-relativistic solution.

2. Iterate.

As known, the iterations converge and provide the functions $g_{12;ij}^{(n)}(1,2,3)$, determining the LFWF.

No principal difficulties: 3D numerical integral is nothing!

• Current status of the ³He problem

Together with Kaiyu Fu, Zhimin Zhu and Ziqi Zhang.

The equations, especially, the kernels

$$W_{ij}^{i'j'}(\mathbf{31}) = \Pi_{12}Tr\Big[(\hat{k}_2 + m)O_2(\hat{k'}_2 + m)S_{j'}(2')(\hat{p} + M)\bar{S}_j(3)(\hat{k}_3 + m) \\ \times T_{i'}(3, 1', 2')(-\hat{k'}_1 + m)O_1(-\hat{k}_1 + m)\bar{T}_i(1, 2, 3)\Big]$$

were derived and tested. The dimension: $16 \times 16 \times 3 = 768$ elements, calculated numerically, by multiplication of the Dirac matrices (to avoid to derive and keep 768 matrix elements).

- However, solving problem by iterations, there was found a difficulty with convergence of iterations.
- The code has been debugged in oversimplified model: the three-boson spinless system with contact interaction, where the solution is known. Hoping that the problem will be solved and the ³He LFWF will be found soon!

• Tritium ³H – nnp

³He and ³H are two isotopic states (like *n* and *p*). However, ³H is radioactive: ³H → ³He+e⁻ + *v*_e. It is rather expensive: 1 gram costs \$30 000 (1000 times more expensive than gold). 1 liter of ³He costs about \$1000.
I don't know, whether its structure will be measured in nearest future. However, we can make predictions.

• Nucleon

In quark model, it is also a three-fermion system. LFWF has the same structure as for ³He with the replacement of the nucleon spinors by the quark ones and the 3 He spinor by the nucleon one. However, interaction is simpler: exchanges by seven bosons are replaced by the one-gluon exchange + confinement. SU(2) (isospin) symmetry of nucleons can be replaced by SU(3) symmetry of quarks. However, the wave functions which are used so far to describe the nucleon are oversimplified.

Application to the nucleon ff's

S.J. Brodsky, J.R. Hiller, D.S. Hwang, V.A. Karmanov,

The covariant structure of light-front wave functions and the behavior of hadronic form factors, Phys. Rev. D 69, 076001 (2004).

 $\langle p'|J^{\mu}(0)|p\rangle = \bar{u}(p') \left[F_1(Q^2)\gamma^{\mu} + F_2(Q^2)\frac{i}{2M}\sigma^{\mu\alpha}q_{\alpha} \right] u(p)$ Problem: $QF_2/F_1 \approx const$ instead of $Q^2F_2/F_1 \approx const$.

• Model

Model: di-quark (J = 0) + quark. Wave function: $\psi_{\sigma_1}^{\sigma} = \bar{u}_{\sigma_1}(k_1) \left(\varphi_1 + \frac{M\hat{\omega}}{\omega \cdot p}\varphi_2\right) u^{\sigma}(p)$ Or $\psi_{\sigma_1}^{\sigma} = w_{\sigma_1}^{\dagger} \left(f_1 + \frac{i}{k}[\vec{n} \times \vec{k}] \cdot \vec{\sigma} f_2\right) w^{\sigma}$ Wick-Cutkosky model shows that

$$\varphi_2 = \frac{M_0 - M}{2M}\varphi_1$$

M is the nucleon mass, M_0 is the kinetic energy of the constituents.

This gives asymptotic: $QF_2/F_1 \rightarrow const$.

Yukawa model with vector exchange:

 $F_2/F_1 \rightarrow \log^2(Q^2/m^2)/Q^2$ is also consistent with data.

• Towards the true nucleon LFWF

Nobody yet found and applied the nucleon LFWF with full 16 components.

Though, there is always a problem with the spin content of nucleon.

This is intriguing, important and interesting problem. We are now ready to solve it!

 $J^{\pi} = 0^+.$

The structure of the LFWF is close the ³He case: the spinor of the "initial ³He is replaced by the spinor of the fourth "final" nucleon. There are still 16 spin components. However, one extra nucleon means

one extra 3D variable - complication:

Each extra particle brings 3 extra variables, like in the non-relativistic WF.

But the integral equation is still in three variables (for two-body interaction).

• Proposals

- To calculate full nucleon LFWF and its em form factors
- To calculate ⁴He LFWF and its em form factor
- Next light nuclei $A \ge 4$

⁴He and next nuclei depend on the power of the computer facilities and availability of the working people.

The perspectives are exciting!