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ABSTRACT: I will give an overview of selected results in light-front
(LF) field theory obtained within the last two decades. First, I will
demonstrate advantages of the (not manifestly-covariant) LF Hamiltonian
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perturbation theory by calculating forward-scattering amplitude in
two-dimensional self-interacting scalar model in a finite-volume treatment
(DLCQ method). The corresponding amplitudes converges to the correct
continuum limit without a need for a LF zero mode. In a similar
fashion, non-vanishing LF vacuum amplitudes will be shown to exist in
the LF theory despite naive kinematical arguments that forbid the vacuum
bubbles. In the second lecture, I will formulate a consistent quantization
scheme for two-dimensional massless LF fields. Based on that, non-
perturbative (operator) solutions of a few two-dimensional relativistic
models (derivative-coupling, Thirring, Thirring-Wess) will be given in the
LF formulation. For comparison, a systematic Hamiltonian treatment
of the Thirring model within the conventional field theory will be
presented including the true physical ground state of the model with the
non-trivial structure. In the third lecture, I shall start with quantization
of the two-dimensional LF abelian gauge field as a massless limit of
the massive vector field in the covariant (Feynman) gauge and will show
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presence of an infinite set of dynamical LF zero modes. Then a few more
formal/structural aspects of the LF QFT will be addressed, in particular
consistency of boundary values of the two-point functions in two and
four dimensions, and the ability of the LF Hamiltonian approach to yield
the correct result in agreement with the covariant Feynman approach. An
important element in this demonstration is the field expansions with small
imaginary parts in the plane-wave factors. Finally, an outline of future work
along the presented topics is given.
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– Typeset by FoilTEX – 2
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Selected results over last 15 years

A few remarks concerning the Motivation - Purpose - Conceptual basis

• To demonstrate advantages of (manifestly-non covariant) Hamiltonian
LF perturbation theory (PT)

• Delicate role/status/real existence of the LF zero modes

• In perturbation theory, ZMs not needed, Feynman amplitudes rewritten
in terms of the LF variables do not fully coincide with genuine LF PT
formalism/mechanisms

• nicely illustrated with the example of LF vacuum amplitudes (bubbles)

• LF vacuum - too simple? - where are the vacuum phenomena, degeneracy,
symmetry breaking?
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• Solvable models: toy (unrealistic) theories in 2D, non-perturbative
(operator) solutions of field equations possible, suitable for comparison
between the LF and conventional ”ET” form of the theory

• LF ”failures” or apparent inconsistencies: try positive approach, solutions
may differ from the ET patterns

Light front (LF) field theory: an independent form of QFT

different parametrization of space-time ⇒ different structure of field
equations, field variables (dynamical vs. constrained) ...

Dirac RMP 1949:

three forms of the Hamiltonian relativistic dynamics

front form the most efficient one, only 3 dynamical Poincaré generators,
physical vacuum obtained kinematically (no need to solve the dynamics as
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in the conventional (”instant” or space-like (SL) form), positivity of the
(kinematical) quantity - the LF momentum p+ in addition to the (LF)
energy P−.

Here p± = p0 ± p3, p− =
p2⊥+m2

p+
- no square-root ambiguity,

∂µ∂
µ = ∂+∂− − ∂2

⊥ ⇒ different structure of field equation, smaller number
of dynamical dofs (constraints), etc.

creation and annihilation operators well defined also outside the
quantization surface x+ = 0, not true for SL form outside t = 0 (BD)

Quantum field theory formulated in terms of light-front variables:

needs new/different intuition and careful mathematics

Example: massless fields in 2 dimensions: seemingly hard to initialize,
quantization appeared obscure, ad hoc constructions... long-lasting struggle
with the Schwinger model (!)
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In fact they emerge as the massless limit of massive fields (scalar,
fermion...). Based on the massive 2-point functions, change of variables
for some components. A consistent scheme, correct consequences (solvable
models, bosonization, conformal field theory...)

Another problem appeared to be paradoxically related to the most
celebrated property of the LF quantization - vacuum simplicity

Fock vacuum is an exact eigenstate with lowest energy for the
full interacting Hamiltonian

positivity of the LF momentum p+ together with its conservation implies
that the ground state of any dynamical model cannot contain quanta
carrying p+ 6= 0. Only a tiny subset of all field modes, namely those
carrying p+ = 0 - the LF zero modes (ZM) - can contribute:

VACUUM EFFECTS, STRUCTURE?
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I. VACUUM DIAGRAMS IN LIGHT-FRONT FIELD THEORY

ABSTRACT:

We demonstrate that vacuum diagrams in light front field theory
are non-zero, contrary to the prevailing opinion. Using the light-front
Hamiltonian (time-ordered) perturbation theory, the vacuum amplitudes in
self-interacting scalar λφ3 and λφ4 models are obtained as p = 0 limit of
the associated self-energy diagrams, where p is the external momentum.
They behave as Cλ2µ−2 in D=2, with µ being the scalar-field mass, or
diverge in D=4, in agreement with the usual ”equal-time” form of field
theory, and with the same value of the constant C. The simplest case of
the vacuum bubble with two internal lines is analyzed in detail. It is shown
that, surprisingly, the light-front diagrams are nonvanishing not due to the
zero-mode contribution. This is made explicit using the DLCQ method -
the discretized (finite-volume) version of the theory, where the light-front
zero modes are manifestly absent, but the vacuum amplitudes still converge
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to their continuum-theory values with the increasing ”harmonic resolution”
K. Finally, a few open (and a bit puzzling) questions will be discussed.

I. INTRODUCTION

How does LF theory describe vacuum phenomena? Is the LF dynamics
equivalent to the SL one? Can it predict something new?

Prevailing opinion (Brodsky, Burkhard...): LF vacuum always ”trivial”
(empty state), in particular: vacuum bubbles do not exist in LF perturbation
theory, cosmological consequences (Brodsky and Schrock) if true would
mean LF theory is not equivalent to the SL theory

In 2018, J. Collins has pointed out this controversy along with a
corrected treatment for the simplest LF vacuum loop with 2 internal lines,
identified a mathematical difficuty
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(a) (b) (c)

Vacuum bubbles for φ3 and φ4 models

The equivalence issue realized and studied already in the pioneering
papers on LF perturbative S-matrix by Cheng and Ma (1969) and by T.-M.
Yan (1973) includig the vacuum problem at the perturbation theory level

Method: covariant Feynman amplitudes (integrals) rewritten in terms
of LF variables, the delicate step: to perform the integration in p−

variable, since the propagators in 2D behave as (k+k−−m2+ iǫ)−1 instead
of (k20 − k21 −m2 + iǫ)−1 - convergence
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T.-M. Yan, PRD 7, 1780 (1973): I =
∫

d4p 1
(p2−µ2+iǫ)3

= π2

2iµ2.

Here d4p = dp0dp1dp2dp3 and p0 → idp4. In LF variables,

I =

∫

dp+dp−d2p⊥
1

(p+p− − p2⊥ − µ2 + iǫ)3
= −π

4

∫

dp+dp−
1

(p+p− − µ2 + iǫ)2
.

(1)

A double pole at p− = µ2−iǫ
p+

, at infinity for p+ = 0, a careful treatment

needed:

I = −π

4

+∞
∫

−∞

dp+ lim
Λ→∞

+Λ
∫

−Λ

dp−
1

(p+p− − µ2 + iǫ)2
=

=
π

4

+∞
∫

−∞

dp+

p+
lim

Λ→∞

( 1

p+Λ− µ2 + iǫ
− 1

−p+Λ− µ2 + iǫ

)

. (2)
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Using the identity

1

p+

( 1

p+Λ− µ2 + iǫ
− 1

−p+Λ− µ2 + iǫ

)

=
1

µ2

( Λ

p+Λ− µ2 + iǫ
− Λ

p+Λ + µ2 − iǫ

)

,

(3)
for Λ → ∞, one gets

I =
π

4µ2

+∞
∫

−∞

dp+
( 1

p+ + iǫ
− 1

p+ − iǫ

)

=
π

4µ2

+∞
∫

−∞

dp+
[

−2iπδ(p+)
]

=
π2

2iµ2
.

(4)

Same result with the exponential α-representation iD−1 =
∞
∫

0

dαeiα(D+iǫ).

Chang and Ma different method for a vacuum bubble with 3 internal lines

V =

∫

dp+dp−
1

p+p− − µ2 + iǫ
Σ(p+p−), (5)
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where Σ(p2) represented as

Σ(p2) =

∫

dλF (λ)eiλp
2
, F (λ) =

+∞
∫

0

dα1dα2δ(λ(α1+α2)−α1α2)e
−iµ2α1α2/λ,

(6)
where the above α-representation used here and also in (5). Insert Σ of
(6) into (5):

V =

∫

dp+dp−
[

− i

+∞
∫

0

dαdλF (λ)eip
2(λ+α)−iµ2α

]

=

=

∫

dp+
[

− 2πi

∫ +∞

0

dαdλF (λ)(λ+ α)−1e−iµ2α
]

δ(p+). (7)

Non-zero result, but no explicit formula given.
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(a) (b) (c)

Figure 2. Self-energy diagrams for for φ3, φ4 and φ5 models

HERE: generalization of Collin’s analysis to loops with more internal
lines, using the analyticity argument, both continuum and finite-volume
formulation (DLCQ), complete agreement with covariant Feynman results

”HISTORICAL” DETOUR

A. Harindranath, K. Martinovic, J. P. Vary, Perturbative S-matrix in
discretized light cone quantization of two-dimensional φ4 theory, Phys.
Lett. B 536 (2002) 250
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illustrates (i) simplicity of ”old-fashioned” LF perturbation theory,
starting from covariant Feynman amplitudes may be misleading (ii) works
in a finite volume with correct continuum limit (iii) no ZMs needed

the paper was response to the work M. Taniguchi, S. Uehara, S.
Yamada, K. Yamawaki, Does DLCQ S-matrix have a covariant continuum
limit?, Mod. Phys. Lett. A16 (2001) 2177

CLAIM: NO, IT DOES NOT, at least for processes with p+ = 0
exchange

PROBLEM: they considered 2-dimensional integrals
∫

dk−dk+..., k+

discretized, changes of variables ⇒ forward scattering amplitude vanishes
in the continuum limit – wrong

our approach actually gave non-vanishing vacuum amplitudes, correct

value − λ2

8πµ2

– Typeset by FoilTEX – 15



II. THE FORMALISM AND SIMPLE EXAMPLES

The basic formula for the S-matrix in the ”old-fashioned”, Hamiltonian, LF-
time ordered, non-manifestly covariant PT (it avoids the k− integration in
a natural way, also: energy denominators instead of covariant propagators)

Like in the covariant treatment, one starts, in the interacting
representation, from

i
∂Φ(t)

∂t
= HI(t)Φ(t),Φ(t) = S(t, t0)Φ(t0) ⇒ i

∂S(t, t0)

∂t
= HI(t)S(t, t0).

(8)
Try to find the solution as

∑

n g
nSn(t, t0). Inserting to the second eq.

above:

i
∂S0(t, t0)

∂t
= 0, i

∂S1(t, t0)

∂t
= HI(t)S0, ...i

∂Sn(t, t0)

∂t
= HI(t)Sn−1 (9)

– Typeset by FoilTEX – 16



Integrating

S1(t1, t0) = −i

t1
∫

t0

dt2HI(t2), (10)

etc.

With V = P−
int, V (x+) = e

i
2P

−
0 x+

V (0)e−
i
2P

−
0 x+

, we have

Sfi = δfi −
i

2

+∞
∫

−∞

dx+〈φf |V (x+)|φi〉 −

−1

4

+∞
∫

−∞

dx+
1 〈φf |V (x+

1 )|φn〉
x+
1

∫

−∞

dx+
2 〈φn|V (x+

2 )|φi〉+ . . . , (11)
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The T and M matrices are defined after extracting kinematical factors:

Sfi = δfi − 2πiδ(p−i − p−f )Tfi, Tfi =
1

√

p+f p
+
i

δ(p+f − p+i )Mfi (12)

A complete set of states was inserted in (11):

1̂ =
∑

n

|φn〉〈φn| = |0〉〈0|+
+∞
∫

0

dl+1 a
†(l+1 )|0〉〈0|a(l+1 ) +

+

+∞
∫

0

dl+1

+∞
∫

0

dl+2 a
†(l+2 )a

†(l+1 )|0〉〈0|a(l+1 )a(l+2 ) + . . . . (13)
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We shall work with λφ3 and λφ4 models in 2D, for which

P−
int =

λ

3!
3

+∞
∫

0

dk+√
4πk+

+∞
∫

0

dp+
√

4πp+

+∞
∫

0

dq+
√

4πq+
2πδ(p+ + k+ − q+)

×
{

a†(q+)a(k+)a(p+) + a†(p+)a†(k+)a(q+)
}

(14)
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P−
int = V1 + V2 + V3 =

=
λ

4!

+∞
∫

0

dk+√
4πk+

+∞
∫

0

dp+
√

4πp+

+∞
∫

0

dq+
√

4πq+

+∞
∫

0

dr+√
4πr+

8π

×
{[

a†(k+)a†(p+)a†(q+)a(r+) + a†(r+)a(p+)a(q+)a(k+)
]

δ(k+ + p+ + q+ − r+)

+
3

2
a†(k+)a†(p+)a(q+)a(r+)δ(k+ + p+ − q+ − r+)

}

. (15)

The rules of the LF perturbation theory imply that the vacuum amplitudes
(bubbles) vanish (or rather are mathematically ill-defined) (Yan 1973) as
the corresponding integrals contain the delta function δ(p+1 + p+2 ... + p+n )
(momentum conservation) which can be satisfied only if all of them vanish,
leading to singular integrands. The simplest example: LF tadpole

a†(k+1 )a(k
+
2 )a

†(k+3 )a(k
+
4 ) = δ(k+2 −k+3 )a

†(k+1 )a(k
+
4 )+no ≡ VT+no, (16)
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- it arises in the process of normal-ordering the Hamiltonian

S
(1)
fi = − i

2

+∞
∫

−∞

dx+〈0|a(p+f )e
i
2p

−
f
x+

VTe
− i

2p
−
i x+

a†(p+i )|0〉 (17)

⇒ MT =
λ

8π

+∞
∫

0

dk+

k+
→ λ

8π

Λ
∫

ǫ

dk+

k+
=

λ

8π

Λ
∫

µ2

Λ

dk−

k−
=

λ

8π
log

Λ2

µ2
. (18)

change of variable k+ → µ2

k+
performed, no need to hunt for poles at

infinity/”Ligterink method” (complicated), Mishchenko et al, PRD 2005

• A. Harindranath, L. Martinovic and J. P. Vary, PRD 64, 105016 (2001):

IMF, near-LC and LFPT loop diagrams (self-energy and scattering):
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comparison

in particular, one-loop self-energy in λφ3(3 + 1) toy model

Σ(p2) =
λ2

4(2π)3

1
∫

0

dx

∫

d2q⊥
1

p2x(1− x)− (q⊥)2 − µ2 + iǫ
. (19)

Reducing to 1+1 dim and setting p = 0 (=vacuum bubble, J. Collin’s
case), we have

V ≡ Σ(0) =
λ2

8π

1
∫

0

dx
1

−µ2 + iǫ
= − 1

8π

λ2

µ2
. (20)

We did not realize this connection at that time
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Simple case - analytic formula for s ≡ p2 6= 0:

V =
λ2

8π

1
∫

0

dx

sx(1− x)− µ2 + iǫ
= −4

arctan
√

s
4µ2−s

√

4µ2s(1− s)

λ2

8π
. (21)

Undefined for s = 0, L’Hospital yields the correct value ∼ −1/µ2.

Vacuum amplitudes in the SL form: bubble in φ3 toy model
The corresponding Feynman rules lead to the double two-dimensional
integral expression

V3(µ) = Nλ2

∫

d2k1

∫

d2k2 G(k1)G(k2)G(k1 + k2), (22)

G(k) =
i

k2 − µ2 + iǫ
, N =

1

3!

1

i(2π)4
. (23)
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The coefficient 1/3! is the symmetry factor. Can be evaluated in a few
ways: by using the Feynman parameters, by means of α-representation or
via more sophisticated mathematical methods (Mellin-Barnes representation
for powers of massive propagators (Davydychev and Tausk, NPB (1993),
PRD (1996)) - the same result

V3(µ) = −iλ2

µ2
π2NC, C = 2.343908..., (24)

The constant C has a particular representation in each of the methods

The first method: combine the propagators into one denominator by
means of the auxiliary integrals in terms of the Feynman parameters xi,
then go over to Euclidean space and calculate the integrals in p and q
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variables. The result is the the double-integral representation

C =

1
∫

0

dx1

1−x1
∫

0

dx2
1

D(x1, x2)
, (25)

D(x1, x2) = x1(1− x1) + x2(1− x2)− x1x2.

The first integral can be calculated analytically in terms of arctan function
and square-roots of polynomials, the numerical evaluation of the second
integral then yields the above value of C.

If we consider the self-energy diagram instead of the vacuum bubble
(G(k1+k2) replaced by G(p−k1−k2) in Eq.(22)), the analogous calculation
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yields

Σ4(p
2) = Nλ2

1
∫

0

dx1

1−x1
∫

0

dx2
1

A(x1, x2)p2 −D(x1, x2)µ2
,

A(x1, x2) = x1x2(1− x1 − x2). (26)

matches the LF result for p = 0

III. LIGHT-FRONT CALCULATION IN CONTINUUM

The result (24) obtained in a very simple way also in the LFPT, contrary to
the the general belief
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Naively, the LFPT rules yield ill-defined expression (Yan 1973)

Ṽ ∼
∞
∫

0

dp+1
p+1

∞
∫

0

dp+2
p+2

∞
∫

0

dp+3
p+3

δ(p+1 + p+2 + p+3 )

(−µ2)[ 1

p+1
+ 1

p+2
+ 1

p+3
]
. (27)

This essentially expresses the fact that since the incoming momentum is
zero, the conservation of the LF momentum p+ requires that each of three
internal lines must also carry vanishing LF momentum, BUT there is no
such a mode!

THE CORRECT METHOD: start with the (self-energy) graph
with nonvanishing external momentum, write down the corresponding LF
amplitude and evaluate its value at p = 0 (after going over to relative LF
momenta – covariant form):

the vacuum loop emerges simply as the limit of the associated self-energy
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graph (of the ”n+1” theory) for vanishing external momentum:

Σ4(p) = Ñλ2

p+
∫

0

dk+

k+

p+−k+
∫

0

dl+

l+(p+ − k+ − l+)

1

p− − µ2

k+
− µ2

l+
− µ2

p+−k+−l+
+ iǫ

.

(28)

Introducing the dimensionless variables x = k+

p+
, y = l+

p+
, Σ(p) becomes

Σ4(p) = Ñλ2

1
∫

0

dx

x

1−x
∫

0

dy

y(1− x− y)

1
[

p2 − µ2

x − µ2

y − µ2

1−x−y

]

, Ñ =
1

3!

1

4π)2
.

(29)
Now we can set p = 0. This expression replaces the incorrect Eq.(27).
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The integral over the variable y can be performed explicitly, yielding

F (x) =
1

µ2

4x√
3x2 − 2x− 1

arctan
1− x√

3x2 − 2x− 1
. (30)

The numerical computation of the second integral gives

Σ4(0) ≡ V3(µ) = −λ2

µ2
ÑC, C = 2.343908 . . . , (31)

in the complete agreement with the space-like result (24). The overall
situation very simple - multiplying out the terms in the denominator of
Eq.(29) for p = 0: the corresponding double integral is precisely equal the
representation of the constant C in Eq.(26). The LF and SL schemes match
at this point. The only difference:

in the SL theory one can start directly with the vacuum diagram while in
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the LF case the latter emerges as the the limit of the associated self-energy
diagram for vanishing external momentum

change to relative variables makes the integrand to depend on p2, i.e.
symmetrically on both p+ and p−.

Σ4(p
2) is also the same in the both schemes, the difference: the LF

scheme needs for that just two steps, the conventional Feynman procedure
by an order of magnitude longer

THE SIMPLEST DIAGRAM WITH TWO INTERNAL LINES

The above result can be confirmed in a different way. Consider for
simplicity the one-loop self energy diagram in the λφ3 theory (Fig. 2). The
corresponding Feynman amplitude is

−iΣ3(p
2) =

1

2

(−iλ)2

(2π)2

∫

d2k G(k)G(p− k), (32)
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The vacuum bubble (p = 0, λ = 1) rewritten in terms of the LF variables:

V2(µ) =
i

16π2

+∞
∫

−∞

dk+
+∞
∫

−∞

dk−
1

(k+k− − µ2 + iǫ)2
. (33)

To correctly evaluate the integral over k−, impose a cutoff Λ [?], leading
to (c = −i/16π2)

V2(µ) = c

+∞
∫

−∞

dk+

k+

[ 1

Λk+ − µ2 + iǫ
− 1

−Λk+ − µ2 + iǫ

]

.
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Utilizing a suitable identity (see above), one finds for Λ → ∞

V2(µ) =
c

µ2

+∞
∫

−∞

dk+
[ 1

k+ + iǫ
− 1

k+ − iǫ

]

=

=
c

µ2
(−2πi)

+∞
∫

−∞

dk+δ(k+) = − 1

8π

1

µ2
. (34)

agreement with the result obtained in the usual SL calculation

This simplest diagram sheds light upon the mechanism at work in the
genuine LF case
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The LFPT formula for the self-energy Σ3 (32) is

Σ3(p) =
λ2

8π

p+
∫

0

dk+

k+(p+ − k+)

1

p− − µ2

k+
− µ2

p+−k+
+ iǫ

. (35)

introduce variable x = k+/p+, the denominator transformed to the form
x(1− x)p2 − µ2 + iǫ; for p = 0 (34) reproduced

Alternatively, work directly with the form (35). Take p+ = p− = η for
simplicity, we have (λ = 1 henceforth)

Σ3(η) =
1

8π

η
∫

0

dk+

k+(η − k+)

1

η − µ2

k+
− µ2

η−k+
+ iǫ

. (36)
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The integral evaluated exactly:

Σ3(η) = − 1

4π

(

G(η) −G(0)
)

, G(k) =
arctan

(

2k−η√
4µ2−k2

)

η
√

4µ2 − η2
. (37)

The expansion for infinitesimal η gives

Σ3(η) = − 1

8π

1

µ2

[

1 +
η2

4µ2
+O(η4)

]

. (38)

The correct result recovered for η = 0.

The reason is simple: the integrand in (36) is η−1[k+(η − k+)− µ2]−1.
For very small η the expression in the brackets almost a constant very close
to (−µ2) at the interval (0, η), while the diverging η−1 factor is canceled
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by the length η of the integration domain. However, setting η = 0 from
very beginning as in (27) yields the ill-defined result

FINITE VOLUME (DLCQ) CALCULATION

Remarkably, the same result obtained in the discretized (finite-volume)
treatment with (anti-)periodic boundary conditions (BC). In both cases, the
field mode carrying k+ = 0 is manifestly absent.

The corresponding field expansion at x+ = 0 is

φ(0, x−) =
1√
2L

∞
∑

n

1
√

k+n

[

ane
−ik+n x−

+ a†ne
ik+n x−]

, (39)

where k+n = 2πn/L and L is the lenght of the finite interval. The index
n runs over half-integers for antiperiodic boundary conditions and over
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integers for periodic BC, with n = 0 excluded (the field equation in the
ZM sector µ2φ0 = 0 requires the field mode φ0 ≡ φ(k+ = 0) to vanish for
µ 6= 0.) The DLCQ analog of the Σ3(p) amplitude is

Σ3(p) = N
p+
∑

k+

1

k+(p+ − k+)

1
[

p− − µ2

k+
− µ2

p+−k+

]
, (40)

p+ =
2π

L
K, k+ ≡ k+n =

2π

L
n, n = 1, 2, . . . ,K − 1. (41)
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Normalization constant N . For p = 0 and PBC, Σ3(0) = V2(µ) is

V2(µ) = − 1

8πµ2
S,

S =

K−1
∑

n=1

1

n(K − n)

1
[

1
n + 1

K−n

] =
K − 1

K
. (42)

K plays the role of η−1 For K → ∞, S converges to the continuum value
1. The same result for the antiperiodic BC

In Table I, the smooth approach of the self-energy value to the vacuum-
loop value as p → 0 is shown.
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Table 1: Smooth approach of the one-loop self-energy amplitude of the λφ3

model to its value at p = 0 (K = 512)

p2/µ2 10−2 10−3 10−4 10−5 10−6 0
C 1.50902 1.09320 1.00667 0.99890 0.99813 0.99805

The DLCQ analog of the Σ4(p) amplitude is

Σ4(p) = −λ2N

p+
∑

q+

p+−q+
∑

k+

1

k+q+(p+ − k+ − q+)
[

p− − µ2

k+
− µ2

q+
− µ2

p+−k+−q+

]
.

(43)
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For p = 0 and with k+ → 2π
L m, etc.:

Σ4(0) = V3(µ
2) = − 1

µ2

K−2
∑

m=1

1

m

K−m−1
∑

n=1

1

n(K −m− n)
[

1
m + 1

n + 1
K−m−n

].

(44)
Numerical values:

K = 32 K = 64 K = 128 K = 512 K = 2048

V = 1.921 V = 2.099 V = 2.205 V = 2.301 V = 2.331 (45)

Smooth approach to p = 0 (K = 512):

p2/µ2 = 10−2 p2 = 10−4 p2 = 10−6 p2 = 0

V = 3.267 V = 2.307 V = 2.301 V = 2.302 (46)
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Convergence for the φ4 loop slower, but reliable:

V4 = − 1

µ2

K−3
∑

l=1

1

l

K−l−2
∑

m=1

1

m

K−l−l−1
∑

n=1

1

n(K − l −m− n)
[

1
l +

1
m + 1

n + 1
K−l−m−n

].

(47)
V4 = 6.798, 7.795, 7.967 for K = 128, 512, 800, approaching the
continuum value V4 = 8.414....

QUESTIONS

• is the ”limiting picture” the only explanation? Note: p+ only positive,
only 1 mode propagating in vacuum loop, but it does not exist, dilemma?

• P+ conservation violated? For arbitrarily small p manifestly not, just in
one point? What could be a different interpretation of Σ(0)?
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• ”LF Feynman” = LF theory?

• Correction to the LF vacuum energy?

CONCLUSIONS

• vacuum diagrams in the φ3(1+1) and φ4(1+1) models obtained as p = 0
(external momentum) limit of the corresponding self-energy diagrams

• works also in a final volume with (A)PBC (DLCQ) ⇒ not effect of the
zero modes

• generalization to e.g. Yukawa theory and to (3+1)-dimensional case
straightforward

• expected to work also for the generalized tadpoles - to be checked
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Simple tadpole and a generalized tadpole in φ4 model
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